Proteostasis is critical for maintaining cell function and proteome stability may play an important role in human embryonic stem cell (hESC) immortality. Notably, hESC populations exhibit a high assembly of active proteasomes, a key node of the proteostasis network. FOXO4, an insulin/IGF-1 responsive transcription factor, regulates proteasome activity in hESCs. We find that loss of FOXO4 reduces the potential of hESCs to differentiate into neural lineages. Therefore, FOXO4 crosses evolutionary boundaries and links hESC function to invertebrate longevity modulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864013 | PMC |
http://dx.doi.org/10.1111/acel.12067 | DOI Listing |
Ultrasound Q
March 2025
Department of Echocardiography, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
Berry syndrome is a rare combination of cardiac malformations, which is characterized by the following malformations, including the aortopulmonary window, aortic right pulmonary origin, interrupted aortic arch or hypoplastic aortic arch or coarctation of the aorta, and an intact ventricular septum. There are few reviews on prenatal diagnosis of Berry syndrome by fetal echocardiography. We used sequential cross-sectional scanning from apex to bottom of the heart to find aortic right pulmonary origin, aortopulmonary window, and hypoplastic aortic arch.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.
Intercellular transmission of messenger RNA (mRNA) is being explored in mammalian species using immortal cell lines. Here, we uncover an intercellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells under the condition impermissible for primed hPSC culture.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive.
View Article and Find Full Text PDFDev Dyn
January 2025
Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA.
Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development.
View Article and Find Full Text PDFFront Immunol
January 2025
Central Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
Background: Uncontrolled severe eosinophilic chronic rhinosinusitis (eCRS) is associated with elevated levels of Th2 cells and raised immunoglobulin concentrations in nasal polyp tissue. eCRS is characterized by high eosinophilic infiltration and type 2 inflammation. Gαi1/3 proteins participate in allergic inflammation by regulating immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!