FOXO4 is necessary for neural differentiation of human embryonic stem cells.

Aging Cell

Howard Hughes Medical Institute, Glenn Center for Aging Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

Published: June 2013

AI Article Synopsis

Article Abstract

Proteostasis is critical for maintaining cell function and proteome stability may play an important role in human embryonic stem cell (hESC) immortality. Notably, hESC populations exhibit a high assembly of active proteasomes, a key node of the proteostasis network. FOXO4, an insulin/IGF-1 responsive transcription factor, regulates proteasome activity in hESCs. We find that loss of FOXO4 reduces the potential of hESCs to differentiate into neural lineages. Therefore, FOXO4 crosses evolutionary boundaries and links hESC function to invertebrate longevity modulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864013PMC
http://dx.doi.org/10.1111/acel.12067DOI Listing

Publication Analysis

Top Keywords

human embryonic
8
embryonic stem
8
foxo4
4
foxo4 neural
4
neural differentiation
4
differentiation human
4
stem cells
4
cells proteostasis
4
proteostasis critical
4
critical maintaining
4

Similar Publications

Prenatal Diagnosis of Berry Syndrome by Fetal Echocardiography.

Ultrasound Q

March 2025

Department of Echocardiography, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

Berry syndrome is a rare combination of cardiac malformations, which is characterized by the following malformations, including the aortopulmonary window, aortic right pulmonary origin, interrupted aortic arch or hypoplastic aortic arch or coarctation of the aorta, and an intact ventricular septum. There are few reviews on prenatal diagnosis of Berry syndrome by fetal echocardiography. We used sequential cross-sectional scanning from apex to bottom of the heart to find aortic right pulmonary origin, aortopulmonary window, and hypoplastic aortic arch.

View Article and Find Full Text PDF

Intercellular mRNA transfer alters the human pluripotent stem cell state.

Proc Natl Acad Sci U S A

January 2025

Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.

Intercellular transmission of messenger RNA (mRNA) is being explored in mammalian species using immortal cell lines. Here, we uncover an intercellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells under the condition impermissible for primed hPSC culture.

View Article and Find Full Text PDF

The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive.

View Article and Find Full Text PDF

Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development.

View Article and Find Full Text PDF

Background: Uncontrolled severe eosinophilic chronic rhinosinusitis (eCRS) is associated with elevated levels of Th2 cells and raised immunoglobulin concentrations in nasal polyp tissue. eCRS is characterized by high eosinophilic infiltration and type 2 inflammation. Gαi1/3 proteins participate in allergic inflammation by regulating immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!