Introduction: Androgenetic alopecia (AGA) is the most common form of hair loss, however current treatment options are limited and moderately effective. In the past few years, there has been an increased interest in deciphering the molecular mechanisms responsible for this disorder, which has opened the possibility of novel treatments that promise to not only stimulate hair growth, but also to induce formation of new hair follicles.
Areas Covered: The future holds more effective topical treatments with less systemic side effects (such as topical 5-alfa-reductase inhibitors), prostaglandin analogs and antagonists, medications which act through the Wnt signaling pathway, stem cells for hair regeneration, platelet-rich plasma (PRP) and more effective ways of transplanting hair. A comprehensive search was made using PubMed, GoogleScholar and Clinicaltrial.gov using different combination of key words, which included AGA treatment, new treatments for AGA, Wnt pathway, prostaglandins, PRP and stem cells for hair regrowth.
Expert Opinion: In the near future, treatments with topical 5-alfa-reductase inhibitors and prostaglandin agonists or antagonists are expected. More evidence is needed to verify the efficacy of PRP. Although hair follicle bioengineering and multiplication is a fascinating and promising field, it is still a long way from being available to clinicians.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/13543784.2013.784743 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Division of Gastroenterology and Hepatology, 200 1st Street SW, Rochester, MN, 55905, USA.
Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
Alopecia areata (AA) is an autoimmune condition marked by hair loss, linked to inflammatory processes involving the interleukin-1 receptor type 1 (IL-1R1) pathway. This study aims to explore the relationship between IL-1R1 gene expression, serum IL-1R1 levels, and hsa-miR-19b-3p in relation to AA severity. Using a case-control design, we assessed 100 AA patients and 100 healthy controls, measuring serum IL-1R1 through enzyme-linked immunosorbent assay (ELISA) and analyzing IL-1R1 gene and hsa-miR-19b-3p expression levels via quantitative real-time PCR (qRT-PCR).
View Article and Find Full Text PDFLasers Med Sci
January 2025
Guangzhou Institute of Dermatology, Guangzhou, China.
Since the introduction of CO fractional laser in dermatology, multiple clinical evidences have shown its effectiveness in treating alopecia areata(AA). However, the extent of efficacy remains under-researched, with a lack of extensive and large-scale comparisons, which is a topic of global discussion. We present a case of a 13-year-old male child with AA.
View Article and Find Full Text PDFActas Dermosifiliogr
January 2025
Trichology Unit, Instituto Médico Ricart, Madrid and Valencia, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!