Dystrophia myotonica type 1 (DM1) is an autosomal dominant multisystem disorder. The pathogenesis of central nervous system (CNS) involvement is poorly understood. Disease-specific induced pluripotent stem cell (iPSC) lines would provide an alternative model. In this study, we generated two DM1 lines and a normal iPSC line from dermal fibroblasts by retroviral transduction of Yamanaka's four factors (hOct4, hSox2, hKlf4, and hc-Myc). Both DM1 and control iPSC clones showed typical human embryonic stem cell (hESC) growth patterns with a high nuclear-to-cytoplasm ratio. The iPSC colonies maintained the same growth pattern through subsequent passages. All iPSC lines expressed stem cell markers and differentiated into cells derived from three embryonic germ layers. All iPSC lines underwent normal neural differentiation. Intranuclear RNA foci, a hallmark of DM1, were detected in DM1 iPSCs, neural stem cells (NSCs), and terminally differentiated neurons and astrocytes. In conclusion, we have successfully established disease-specific human DM1 iPSC lines, NSCs, and neuronal lineages with pathognomonic intranuclear RNA foci, which offer an unlimited cell resource for CNS mechanistic studies and a translational platform for therapeutic development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616452 | PMC |
http://dx.doi.org/10.1089/cell.2012.0086 | DOI Listing |
Stem Cell Res
December 2024
Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Electronic address:
Autosomal dominant polycystic kidney disease (ADPKD), a single-gene-inherited kidney disease, is a common cause of end-stage kidney disease (ESKD). The PKD1 gene mutation is the most common cause of ADPKD, accounting for approximately 78% of cases. ADPKD is characterized by the scattered distribution of multiple cysts in the renal parenchyma, ultimately leading to ESKD.
View Article and Find Full Text PDFMamm Genome
December 2024
Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome.
View Article and Find Full Text PDFBio Protoc
December 2024
Department of Neurology, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing has marked a significant advancement in genetic engineering technology. However, the editing of induced pluripotent stem cells (iPSCs) with CRISPR presents notable challenges in ensuring cell survival and achieving high editing efficiency. These challenges become even more complex when considering the specific target site.
View Article and Find Full Text PDFStem Cell Res
December 2024
Cardiology Section, Medical Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Radiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
Coronary artery vasospasm (CAV) is characterized by transient constriction of epicardial coronary arteries leading to angina. Its disease mechanisms are multifactorial but has centered mostly on endothelial dysfunction and smooth muscle hyperreactivity. To facilitate the investigation of these mechanisms in cell culture, we generated and characterized three induced pluripotent stem cell (iPSC) lines from patients with CAV.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
Lysosomes are implicated in a wide spectrum of human diseases including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models has substantially moved the field forward, but studying lysosomal dysfunction in human patients remains challenging. Here, we report the development of the 'tagless LysoIP' method, designed to enable the rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!