Gene loss, thermogenesis, and the origin of birds.

Ann N Y Acad Sci

Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA.

Published: June 2013

Compared to related taxa, birds have exceptionally enlarged and diversified skeletal muscles, features that are closely associated with skeletal diversification and are commonly explained by a diversity of avian ecological niches and locomotion types. The thermogenic muscle hypothesis (TMH) for the origin of birds proposes that such muscle hyperplasia and the associated skeletal innovations are instead the consequence of the avian clade originating from an ancestral population that underwent several successive episodes of loss of genes associated with thermogenesis, myogenesis, and skeletogenesis. Direct bird ancestors met this challenge with a combination of behavioral strategies (e.g., brooding of nestlings) and acquisition of a variety of adaptations for enhanced nonshivering thermogenesis in skeletal muscle. The latter include specific biochemical alterations promoting muscle heat generation and dramatic expansion of thigh and breast muscle mass. The TMH proposes that such muscle hyperplasia facilitated bipedality, freeing upper limbs for new functions (e.g., flight, swimming), and, by altering the mechanical environment of embryonic development, generated skeletal novelties, sometimes abruptly, that became distinctive features of the avian body plan.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.12090DOI Listing

Publication Analysis

Top Keywords

origin birds
8
associated skeletal
8
proposes muscle
8
muscle hyperplasia
8
muscle
6
skeletal
5
gene loss
4
loss thermogenesis
4
thermogenesis origin
4
birds compared
4

Similar Publications

Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17).

View Article and Find Full Text PDF

The Asian long-horned tick, Haemaphysalis longicornis Neumann, 1901, is the competent vector for severe fever with thrombocytopenia syndrome virus (SFTSV). Haemaphysalis longicornis originated mainly in eastern Asia and invaded many areas like Australia, New Zealand, and the Pacific islands, and was recently introduced to eastern parts of the USA. This species is characterized by high adaptability to a wide range of temperatures and can reproduce parthenogenically under stressful conditions.

View Article and Find Full Text PDF

Coelurosauria, including modern birds, represents a successful group of theropod dinosaurs that established a high taxonomic diversity and significant morphological modifications. In the evolutionary history of this group, a specialized foot morphology, the arctometatarsus, evolved independently in several lineages and has been considered an adaptation for cursoriality. While its functional significance has been extensively studied, the temporal pattern of this parallel evolution, as well as its origin and influencing factors, remains largely unresolved.

View Article and Find Full Text PDF

Hindlimb muscles of the Emperor Penguin Aptenodytes forsteri (Aves, Sphenisciformes) at different postnatal ontogenetic stages.

J Anat

January 2025

División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.

The Emperor Penguin Aptenodytes forsteri is the largest living species of penguin, found exclusively in Antarctica, and is unique in breeding during the winter. Consequently, fewer anatomical studies have been conducted on this species over time compared to others. This study aims to provide an updated and comprehensive description of the hindlimb musculature of Aptenodytes forsteri.

View Article and Find Full Text PDF

[Construction of black-bone silky fowl (Gallus gallus domesticus) families based on genetic diversity].

Zhongguo Zhong Yao Za Zhi

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.

Black-bone silky fowls(Gallus gallus domesticus) have a long history of medicinal use, with the origin in Taihe county, Jiangxi province. The unclear family composition, inbreeding rate, and effective population size were inconducive to the resource conservation or breed improvement of black-bone silky fowls. A genome-wide analysis was performed to evaluate the genetic diversity of 80 black-bone silky fowls from random mating in three farms in 2021 in terms of minor allele frequency(MAF), expected heterozygosity(H_e), observed heterozygosity(H_o), effective population size(N_e), and runs of homozygosity(ROH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!