A quartz crystal microbalance (QCM) technique is developed for the in situ analysis of the cooling crystallization processes of crystal nucleation and growth. In contrast to conventional techniques based on property changes in the solid or solution phase, the proposed QCM technique simultaneously exploits property changes in both the solid and solution phases, such as the solid mass and liquid viscosity, to analyze the crystallization processes. When initially cooling the solution, an increase in the solution viscosity is reflected in the QCM responses for the resonant frequency and resonant resistance. With further cooling, the resonant frequency and resonant resistance sharply change at the induction point of crystal nucleation, as the viscous liquid film on the sensor suddenly shifts to an elastic solid phase. Thereafter, the QCM responses are mainly controlled by the suspension viscosity due to simultaneous crystal nucleation and growth with further cooling. As a result, the QCM responses allow accurate measurement of the induction point and metastable zone width during the cooling crystallization. Additional mechanistic information on the crystallization, including molecular cluster formation, crystal nucleation, and crystal growth, is also extracted from a resonant frequency-resistance plot (F-R plot) of the QCM responses when varying the cooling conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac400585cDOI Listing

Publication Analysis

Top Keywords

crystal nucleation
16
qcm responses
16
cooling crystallization
12
quartz crystal
8
crystal microbalance
8
analysis cooling
8
qcm technique
8
crystallization processes
8
nucleation growth
8
property changes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!