Background: The mean absolute glucose (MAG) change, originally developed to assess associations between glycemic variability (GV) and intensive care unit mortality, has not yet been validated. We used continuous glucose monitoring (CGM) datasets from patients with diabetes to assess the validity of MAG and to quantify associations with established measures of GV.

Subjects And Methods: Validation was based on retrospective analysis of 72-h CGM data collected during clinical studies involving 815 outpatients (48 with type 1 diabetes and 767 with type 2 diabetes). Measures of GV included SD around the sensor glucose, interquartile range, mean amplitude of glycemic excursions, and the continuous overlapping net glycemic action indices at 1, 3, and 6 h. MAG was calculated using 5-min, 60-min, and seven-point glucose profile sampling intervals; correlations among the variability measures and effects of sampling frequency were assessed.

Results: Strong linear correlations between MAG change and classical markers of GV were documented (r=0.587-0.809, P<0.001 for all), whereas correlations with both glycosylated hemoglobin and mean sensor glucose were found to be weak (r=0.246 and r=0.378, respectively). The magnitude of MAG change decreased in a nonlinear fashion (P<0.001), as intervals between glucose measurements increased. MAG change, as calculated from 5-min sensor glucose readings, did reflect relatively small differences in glucose fluctuations associated with glycemic treatment modality.

Conclusions: MAG change represents a valid GV index if closely spaced sensor glucose measurements are used, but does not provide any advantage over variability indices already used for assessing diabetes control.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dia.2012.0303DOI Listing

Publication Analysis

Top Keywords

absolute glucose
8
glycemic variability
8
continuous glucose
8
glucose monitoring
8
mag change
8
type diabetes
8
glucose
6
evaluation absolute
4
glucose change
4
change measure
4

Similar Publications

Background: Primary hypertension (PH) poses significant risks to children and adolescents. Few prediction models for the risk of PH in children and adolescents currently exist, posing a challenge for doctors in making informed clinical decisions.

Objective: This study aimed to investigate the incidence and risk factors of PH in Chinese children and adolescents.

View Article and Find Full Text PDF

Background: Acute myocardial infarction (AMI), particularly ST-segment elevation myocardial infarction (STEMI), significantly impacts global health, exacerbated by risk factors such as diabetes mellitus (DM). While the Gensini score effectively quantifies coronary artery lesions, its correlation with fasting blood glucose (FBG) levels, particularly in a non-linear fashion, has not been thoroughly explored in STEMI patients.

Methods: This study analyzed data from 464 STEMI patients treated with percutaneous coronary intervention at the First People's Hospital of Taizhou City, Zhejiang Province, China, from January 2010 to October 2014.

View Article and Find Full Text PDF

In treating type 2 diabetes, avoiding glucose reabsorption (glucotoxicity) and managing hyperglycemia are also important. A metabolic condition known as diabetes (type-2) is characterized by high blood sugar levels in comparison to normal Bilosomes (BLs) containing Dapagliflozin (Dapa) were formulated, optimized, and tested for oral therapeutic efficacy in the current investigation. Used the Box Behnken design to optimize the Dapa-BLs, formulated via a thin-film hydration technique.

View Article and Find Full Text PDF

Objective: Diabetic peripheral neuropathy (DPN) is a chronic complication of diabetes that can potentially escalate into ulceration, amputation and other severe consequences. The aim of this study was to construct and validate a predictive nomogram model for assessing the risk of DPN development among diabetic patients, thereby facilitating the early identification of high-risk DPN individuals and mitigating the incidence of severe outcomes.

Methods: 1185 patients were included in this study from June 2020 to June 2023.

View Article and Find Full Text PDF

Machine learning-based prognostic modeling in gallbladder cancer using clinical data and pre-treatment [F]-FDG-PET-radiomic features.

Jpn J Radiol

December 2024

Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.

Objectives: This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cancer patients.

Materials And Methods: The study analyzed 52 gallbladder cancer patients who underwent pre-treatment [F]-FDG-PET/CT scans between January 2011 and December 2021. Twenty-seven patients were assigned to the training cohort between January 2011 and January 2018, and the data randomly split into training (70%) and validation (30%) sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!