MicroRNAs (miRNAs) are key post-transcriptional regulators that inhibit gene expression by promoting mRNA decay and/or suppressing translation. However, the relative contributions of these two mechanisms to gene repression remain controversial. Early studies favor a translational repression-centric scenario, whereas recent large-scale studies suggest a dominant role of mRNA decay in miRNA regulation. Here we generated proteomics data for nine colorectal cancer cell lines and integrated them with matched miRNA and mRNA expression data to infer and characterize miRNA-mediated regulation. Consistent with previous reports, we found that 8mer site, site positioning within 3'UTR, local AU-rich context, and additional 3' pairing could all help boost miRNA-mediated mRNA decay. However, these sequence features were generally not correlated with increased translational repression, except for local AU-rich context. Thus the contribution of translational repression might be underestimated in recent studies in which the analyses were based primarily on the response of genes with canonical 7-8 mer sites in 3'UTRs. Indeed, we found that translational repression was involved in more than half, and played a major role in one-third of all predicted miRNA-target interactions. It was even the predominant contributor to miR-138 mediated regulation, which was further supported by the observation that differential expression of miR-138 in two genetically matched cell lines corresponded to altered protein but not mRNA abundance of most target genes. In addition, our study also provided interesting insights into colon cancer biology such as the possible contributions of miR-138 and miR-141/miR-200c in inducing specific phenotypes of SW480 and RKO cell lines, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708174PMC
http://dx.doi.org/10.1074/mcp.M112.025783DOI Listing

Publication Analysis

Top Keywords

translational repression
16
mrna decay
12
cell lines
12
local au-rich
8
au-rich context
8
translational
5
repression
5
mrna
5
integrative omics
4
omics analysis
4

Similar Publications

Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.

View Article and Find Full Text PDF

Defining serine tRNA knockout as a strategy for effective repression of gene expression in organisms with a recoded genome.

Nucleic Acids Res

January 2025

Division of Pharmacoengineering and Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, 125 Mason Farm Rd. Chapel Hill, NC 27599, USA.

Whole genome codon compression-the reassignment of all instances of a specific codon to synonymous codons-can generate organisms capable of tolerating knockout of otherwise essential transfer RNAs (tRNAs). As a result, such knockout strains enable numerous unique applications, such as high-efficiency production of DNA encoding extremely toxic genes or non-canonical proteins. However, achieving stringent control over protein expression in these organisms remains challenging, particularly with proteins where incomplete repression results in deleterious phenotypes.

View Article and Find Full Text PDF

Widespread release of translational repression across Plasmodium's host-to-vector transmission event.

PLoS Pathog

January 2025

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America.

Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not.

View Article and Find Full Text PDF

Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection.

Viruses

November 2024

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host.

View Article and Find Full Text PDF

Atherosclerosis is caused by the accumulation of cholesterol within intimal smooth muscle cells (SMCs) and macrophages. However, the transporter ATP-binding cassette subfamily A, member 1 (ABCA1), can remove cholesterol from these intimal, cells reducing atherosclerosis. Antagomir-mediated inhibition of miR-33a-5p, a microRNA that represses ABCA1 translation, promotes ABCA1-dependent cholesterol efflux and may impede atherosclerosis development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!