The cell cycle usually refers to the mitotic cycle, but the cell-division cycle in the plant kingdom consists of not only nuclear but also mitochondrial and chloroplast division cycle. However, an integrated control system that initiates division of the three organelles has not been found. We report that a novel C-terminal kinesin-like protein, three-organelle division-inducing protein (TOP), controls nuclear, mitochondrial and chloroplast divisions in the red alga Cyanidioschyzon merolae. A proteomics study revealed that TOP is a member of a complex of mitochondrial-dividing (MD) and plastid-dividing (PD) machineries (MD/PD machinery complex) just prior to constriction. After TOP localizes at the MD/PD machinery complex, mitochondrial and chloroplast divisions occur and the components of the MD/PD machinery complexes are phosphorylated. Furthermore, we found that TOP downregulation impaired both mitochondrial and chloroplast divisions. MD/PD machinery complexes were formed normally at each division site but they were neither phosphorylated nor constricted in these cells. Immunofluorescence signals of Aurora kinase (AUR) were localized around the MD machinery before constriction, whereas AUR was dispersed in the cytosol by TOP downregulation, suggesting that AUR is required for the constriction. Taken together our results suggest that TOP induces phosphorylation of MD/PD machinery components to accomplish mitochondrial and chloroplast divisions prior to nuclear division, by relocalization of AUR. In addition, given the presence of TOP homologs throughout the eukaryotes, and the involvement of TOP in mitochondrial and chloroplast division may illuminate the original function of C-terminal kinesin-like proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.116798DOI Listing

Publication Analysis

Top Keywords

mitochondrial chloroplast
28
md/pd machinery
20
chloroplast divisions
16
top
9
kinesin-like protein
8
protein top
8
nuclear division
8
nuclear mitochondrial
8
chloroplast division
8
c-terminal kinesin-like
8

Similar Publications

The complete chloroplast genome of 'Yunqie 9'.

Mitochondrial DNA B Resour

January 2025

School of Agriculture, Yunnan University, Kunming, China.

'Yunqie 9' was selected by the Horticultural Research Institute of Yunnan Academy of Agricultural Sciences based on the local environment of Yunnan Province. It is excellent in fruit quality and yield, but it is relatively weak in disease resistance. No information on complete chloroplast genome and position in the phylogeny of to restrict its genetic improvement.

View Article and Find Full Text PDF

A complete chloroplast genome of S. S. Lai 2004 (Crassulaceae: Crassuloideae).

Mitochondrial DNA B Resour

January 2025

Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China.

We determined the complete chloroplast genome sequence of S. S. Lai 2004.

View Article and Find Full Text PDF

Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes.

View Article and Find Full Text PDF

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF
Article Synopsis
  • Pomacea canaliculata is an invasive aquatic species with varying dietary habits and intestinal microbiota across different habitats (pond, river, ditch).
  • This study utilized gene sequencing and metabolomics to analyze intestinal samples, revealing the highest dietary diversity in ditches and significant differences between male and female diets in ponds.
  • The findings indicate that changes in diet affect intestinal microbiota and metabolic pathways, helping to explain how P. canaliculata adapts physiologically to diverse environments, which is crucial for understanding its impact on aquatic ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!