We propose a new structure consisting of a piezoelectric spring-mass system as a low-frequency piezoelectric energy harvester. A theoretical model is developed for the system from the theory of piezoelectricity. An analysis is performed to demonstrate the low-frequency nature of the system. Other basic characteristics of the energy harvester, including the output power, voltage, and efficiency, are also calculated and examined.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2013.2633DOI Listing

Publication Analysis

Top Keywords

energy harvester
12
piezoelectric spring-mass
8
spring-mass system
8
system low-frequency
8
system
4
low-frequency energy
4
harvester propose
4
propose structure
4
structure consisting
4
consisting piezoelectric
4

Similar Publications

Electronic devices cover a large subset of daily life gadgets which use power to run, hence increasing the load of the energy needs and indirectly impacting greenhouse gas emissions. Smart electrochromic windows provide a solution to this through remarkable energy saving by adjusting optical behavior depending on the environmental conditions. Since the electrochromic windows also need power to run, a self-powered electrochromic panel will be a better solution.

View Article and Find Full Text PDF

Estimation of GHGs emission from traditional kilns charcoal production in northwestern Ethiopia: Implications on climate change.

Heliyon

December 2024

Center of Environment and Development, College of Development Studies, Addis Ababa University, Addis Ababa, P.O.Box 1176, Addis Ababa, Ethiopia.

Rural areas in Ethiopia serve as the primary source of charcoal for urban populations, mainly produced using traditional kilns. However, this traditional method significantly contributes to greenhouse gas (GHG) emissions, exacerbating climate change and deforestation. While banning charcoal production is not currently feasible in Ethiopia because of the lack of affordable alternative energy sources (fuel), improving the efficiency of the traditional production system can mitigate the climate impact caused by charcoal production.

View Article and Find Full Text PDF

Theoretical Study on the Excitation Energy Transfer Dynamics in the Phycoerythrin PE555 Light-Harvesting Complex.

ACS Omega

December 2024

Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China.

Photosynthesis in nature begins with light harvesting. The special pigment-protein complex converts sunlight into electron excitation that is transmitted to the reaction center, which triggers charge separation. Evidence shows that quantum coherence between electron excited states is important in the excitation energy transfer process.

View Article and Find Full Text PDF

Recent Advances in Next-Generation Textiles.

Adv Mater

January 2025

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China.

Textiles have played a pivotal role in human development, evolving from basic fibers into sophisticated, multifunctional materials. Advances in material science, nanotechnology, and electronics have propelled next-generation textiles beyond traditional functionalities, unlocking innovative possibilities for diverse applications. Thermal management textiles incorporate ultralight, ultrathin insulating layers and adaptive cooling technologies, optimizing temperature regulation in dynamic and extreme environments.

View Article and Find Full Text PDF

Harvesting low-velocity water flow energy stably over the long term is a significant challenge. Herein, a flexible rolling triboelectric nanogenerator with a bionic gill cover structure (GFR-TENG) to harvest steady low-velocity water flow energy is proposed. The dielectric material of the GFR-TENG is eight flexible hollow fluorinated ethylene propylene (FEP) pipes, which guarantees that rolling friction is formed between the dielectric material and copper electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!