Applications of ambient mass spectrometry in high-throughput screening.

Analyst

Beijing National Laboratory for Molecular Science, Institute of Analytical Chemistry, Peking University, Beijing 100871, China.

Published: June 2013

The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3an00119aDOI Listing

Publication Analysis

Top Keywords

high-throughput screening
16
ambient mass
8
mass spectrometry
8
direct analysis
8
electrospray ionization
8
screening
5
applications ambient
4
high-throughput
4
spectrometry high-throughput
4
screening development
4

Similar Publications

The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups.

View Article and Find Full Text PDF

Introduction: Bats are recognized as primary natural reservoirs for alpha- and betacoronaviruses. The interspecies transmission of bat coronaviruses to other mammalian hosts, including livestock and humans, can lead to epidemics, epizootics, and global pandemics.

Objective: This study aims to describe coronaviruses associated with horseshoe bats ( spp.

View Article and Find Full Text PDF

Advanced 3D bioprinted liver models with human-induced hepatocytes for personalized toxicity screening.

J Tissue Eng

January 2025

Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Institutes of Health Science, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

The development of advanced models for assessing liver toxicity and drug responses is crucial for personalized medicine and preclinical drug development. 3D bioprinting technology provides opportunities to create human liver models that are suitable for conducting high-throughput screening for liver toxicity. In this study, we fabricated a humanized liver model using human-induced hepatocytes (hiHeps) derived from human fibroblasts via a rapid and efficient reprogramming process.

View Article and Find Full Text PDF

Background: Cervical screening, aimed at detecting precancerous lesions and preventing cancer, is based on cytology and HPV testing. Both methods have limitations, the main ones being the variable diagnostic sensitivity of cytology and the moderate specificity of HPV testing. Various molecular biomarkers are proposed in recent years to improve cervical cancer management, including a number of mRNAs encoded by human genes involved in carcinogenesis.

View Article and Find Full Text PDF

and hybrid approach to unveil triterpenoids from leaves as potential compounds for inhibiting Nrf2.

RSC Adv

January 2025

Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 80708 Taiwan.

Cancer is a leading global health concern, with over 20 million new cases and 9.7 million deaths reported in 2022. Chemotherapy remains a widely used treatment, but drug resistance, which affects up to 90% of treatment outcomes, significantly hampers its effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!