We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663556 | PMC |
http://dx.doi.org/10.1074/jbc.M112.427765 | DOI Listing |
Cancer Immunol Immunother
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany.
Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a poor prognosis for survival. Risk factors include alcohol and tobacco abuse and infection with human papilloma virus (HPV). To enhance anti-tumor immune responses immunotherapeutic approaches are approved for recurrent metastatic disease but only approx.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan; Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan. Electronic address:
Biochemistry
January 2025
Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Prenylation consists of the modification of proteins with either farnesyl diphosphate (FPP) or geranylgeranyl diphosphate (GGPP) at a cysteine near the C-terminus of target proteins to generate thioether-linked lipidated proteins. In recent work, metabolic labeling with alkyne-containing isoprenoid analogues including C15AlkOPP has been used to identify prenylated proteins and track their levels in different diseases. Here, a systematic study of the impact of isoprenoid length on proteins labeled with these probes was performed.
View Article and Find Full Text PDFImmun Inflamm Dis
November 2024
Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Background: Fibrosis is a principal sign of systemic sclerosis (SSc) which can affect several organs including the lung, heart, and dermis. Dermal fibroblasts of SSc patients are characterized by persistent and activated Ras and ERK1/2 signaling which stimulates extreme collagen and extracellular matrix synthesis. Salirasib is a Ras inhibitor that competitively prevents the adherence of GTP-bound Ras to the plasma membrane, that inhibits Ras signaling.
View Article and Find Full Text PDFRes Sq
October 2024
Department of Research and Development, Kibio Inc; Houston, Texas, USA.
Background: Neurofibromatosis type 1 (NF1) is a common inherited neurological disorder that can lead to the development of malignant peripheral nerve sheath tumors (MPNSTs), a highly aggressive form of sarcoma. Current treatment options for MPNSTs are limited, with poor prognosis and high recurrence rates. This study aims to explore the potential of targeting the Galectin-1 (Gal-1) and Ras interaction as a novel therapeutic strategy for MPNSTs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!