Direct and maternal genetic relationships between calving ease, gestation length, milk production, fertility, type, and lifespan of Holstein-Friesian primiparous cows.

J Dairy Sci

Animal and Veterinary Sciences Group, Scottish Agricultural College (SAC), Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom.

Published: June 2013

As the emphasis in cattle breeding is shifting from traits that increase income toward traits that reduce costs, national breeding indices are expanding to include functional traits such as calving ease (CE). However, one issue is the lack of knowledge of genetic relationships between CE and other dairy traits. The same can be said about gestation length (GL), a potential novel selection trait with considerable heritabilities and possible genetic relationships with the calving process. This study aimed to estimate the genetic relationships between CE, GL, and other dairy traits of interest using a national data set of 31,053 primiparous cow performance records, as well as to separate direct and maternal genetic effects. Chosen dairy traits included fertility (calving interval, days to first service, nonreturn rate after 56 d, number of inseminations per conception), milk production (milk yield at d 110 in milk, accumulated 305-d milk yield, accumulated 305-d fat yield, accumulated 305-d protein yield), type (udder depth, chest width, rump width, rump angle, mammary composition, stature, body depth), and lifespan traits (functional days of productive life). To allow the separation of direct and maternal genetic effects, a random sire of the calf effect was included in the multi-trait linear trivariate sire models fitted using ASReml. Significant results showed that easily born individuals were genetically prone to high milk yield and reduced fertility in first lactation. Difficult calving primiparous cows were likely associated with being high-producing, wide and deep animals, with a reduced ability to subsequently conceive. Individuals that were born relatively early were associated with good genetic merit for milk production. Finally, individuals carrying their offspring longer were genetically associated with being wide and large animals that were themselves born relatively early. The study shows that it is feasible and valuable to separate direct and maternal effects when estimating genetic correlations between calving and other dairy traits. Furthermore, gestation length is best used as an indicator trait for lowly heritable calving traits, rather than as a novel selection trait. As estimated direct and maternal genetic correlations differ, we can conclude that genetic relationships between CE, GL, and traits of interest are present, but caution is required if these traits are implemented in national breeding indices.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2012-6229DOI Listing

Publication Analysis

Top Keywords

direct maternal
20
genetic relationships
20
maternal genetic
16
dairy traits
16
gestation length
12
milk production
12
milk yield
12
accumulated 305-d
12
traits
11
genetic
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!