Two-particle dispersion is investigated in the context of anomalous diffusion. Two different modelling approaches related to time subordination are considered and unified in the framework of self-similar stochastic processes. By assuming a single-particle fractional Brownian motion and that the two-particle correlation function decreases in time with a power law, the particle relative separation density is computed for the cases with time sub-ordination directed by a unilateral M-Wright density and by an extremal Lévy stable density. Looking for advisable mathematical properties (for instance, the stationarity of the increments), the corresponding self-similar stochastic processes are represented in terms of fractional Brownian motions with stochastic variance, whose profile is modelled by using the M-Wright density or the Lévy stable density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2012.0154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!