How the innate and adaptive immune systems cooperate in the natural history of allergic diseases has been largely unknown. Plant-derived allergen, papain, and mite allergens, Der f 1 and Der p 1, belong to the same family of cysteine proteases. We examined the role of protease allergens in the induction of Ab production and airway inflammation after repeated intranasal administration without adjuvants and that in basophil/mast cell stimulation in vitro. Papain induced papain-specific IgE/IgG1 and lung eosinophilia. Der f 1 induced Der f 1-specific IgG1 and eosinophilia. Although papain-, Der f 1-, and Der p 1-stimulated basophils expressed allergy-inducing cytokines, including IL-4 in vitro, basophil-depleting Ab and mast cell deficiency did not suppress the papain-induced in vivo responses. Protease inhibitor-treated allergens and a catalytic site mutant did not induce the responses. These results indicate that protease activity is essential to Ab production and eosinophilia in vivo and basophil activation in vitro. IL-33-deficient mice lacked eosinophilia and had reduced papain-specific IgE/IgG1. Coadministration of OVA with papain induced OVA-specific IgE/IgG1, which was reduced in IL-33-deficient mice. We demonstrated IL-33 release, subsequent IL-33-dependent IL-5/IL-13 release, and activation of T1/ST2-expressing lineage(-)CD25(+)CD44(+) innate lymphoid cells in the lung after papain inhalation, suggesting the contribution of the IL-33-type 2 innate lymphoid cell-IL-5/IL-13 axis to the papain-induced airway eosinophilia. Rag2-deficient mice, which lack adaptive immune cells, showed significant, but less severe, eosinophilia. Collectively, these results suggest cooperation of adaptive immune cells and IL-33-responsive innate cells in protease-dependent allergic airway inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1201212 | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
January 2025
International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China.
Relieving hypoxia in the tumor microenvironment (TME) promotes innate and adaptive immunity. Our previous research demonstrated that reoxygenation of the TME promotes the phagocytosis and tumor-killing functions of tumor-associated macrophages (TAMs) by upregulating pyruvate carboxylase (PCB). However, the mechanism remains obscure.
View Article and Find Full Text PDFPlant Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.
View Article and Find Full Text PDFViruses
January 2025
Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.
Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells.
View Article and Find Full Text PDFViruses
January 2025
Department of Ophthalmology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
COVID-19, caused by SARS-CoV-2, has presented formidable challenges to global health since its emergence in late 2019. While primarily known for respiratory symptoms, it can also affect the ocular surface. This review summarizes the effects of SARS-CoV-2 on ocular surface immunity and inflammation, focusing on infection mechanisms, immune responses, and clinical manifestations.
View Article and Find Full Text PDFViruses
December 2024
Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain.
This study explores the relationship between specific SARS-CoV-2 mutations and obesity, focusing on how these mutations may influence COVID-19 severity and outcomes in high-BMI individuals. We analyzed 205 viral mutations from a cohort of 675 patients, examining the association of mutations with BMI, hospitalization, and mortality rates. Logistic regression models and statistical analyses were applied to assess the impact of significant mutations on clinical outcomes, including inflammatory markers and antibody levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!