In this Letter, the beat frequency at rest of a ring laser gyroscope with nonlinear effects is discussed in detail. Even without an additional intensity-stabilizing system, the random nullshift bias induced by the Kerr effect is compensated by the phase shift associated with the stimulated Brillouin/Raman scattering. And the nonlinear stimulated scattering also serves as the gain mechanism of the gyroscope. And thus the influence of the fluctuation of the injected pump intensity on the beat frequency is eliminated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.38.001152DOI Listing

Publication Analysis

Top Keywords

ring laser
8
laser gyroscope
8
beat frequency
8
brillouin/raman compensation
4
compensation kerr-effect-induced
4
kerr-effect-induced bias
4
bias nonlinear
4
nonlinear ring
4
gyroscope letter
4
letter beat
4

Similar Publications

Observation of Optical Chaotic Solitons and Modulated Subharmonic Route to Chaos in Mode-Locked Laser.

Phys Rev Lett

December 2024

East China Normal University, State Key Laboratory of Precision Spectroscopy, and Hainan Institute, Shanghai, China.

We reveal a new scenario for the transition of solitons to chaos in a mode-locked fiber laser: the modulated subharmonic route. Its universality is confirmed in two different laser configurations, namely, a figure-of-eight and a ring laser. Numerical simulations of the laser models agree well with the experiments.

View Article and Find Full Text PDF

The expansion of the seafood market has led to an increased probability of food fraud. The development of rapid and reliable traceability methods for aquatic food products is of utmost importance. In this study, direct analysis and identification of the intestinal microbiota of aquatic foods were conducted.

View Article and Find Full Text PDF

The monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.

View Article and Find Full Text PDF

In this paper, the focusing and tight-focusing properties of radially polarized (RP) Bessel-Gaussian (BG) rotationally-symmetric power-exponent-phase vortex beam (RPVBs) were investigated theoretically and experimentally. Based on the theory of vector beam, the propagation and tight-focusing models were derived to reveal the focusing and tight-focusing properties of the RP-BG-RPVBs by numerical simulation. Then, the experimental setup was established to validate that the RP-BG-RPVBs presented the fan-shaped and polycyclic intensity distribution, which possessed the features of RP beams, BG beams, and RPVBs, similarly.

View Article and Find Full Text PDF

We propose and demonstrate a compact on-chip optical spectrometer by integrating a tunable micro-ring resonator (MRR) with a 4-channel wavelength demultiplexer (DEMUX) based on a Mach-Zehnder interferometer (MZI) lattice filter. The MRR with a 3-dB bandwidth of 0.15 nm ensures the high resolution of the spectrometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!