We theoretically study a low-threshold band-edge lasing in three-dimensional photonic crystals (PhCs) with a face-centered cubic lattice structure, using a complex-valued permittivity approach combined with the Korringa-Kohn-Rostoker method. We show that the lasing threshold at the low-frequency band edge is smaller than that at the high-frequency band edge for the first-order stop band of the PhC. We also analyze the impact of the number of the PhC's layers on the frequency of band-edge lasing and the lasing threshold near the first-order stop band in the ΓL direction, and demonstrate a broad tunability of the lasing frequency with change in the emission collection angle. The obtained results are beneficial for the performance enhancement of tunable, PhC-based chip lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.38.001046DOI Listing

Publication Analysis

Top Keywords

photonic crystals
8
band-edge lasing
8
lasing threshold
8
band edge
8
first-order band
8
lasing
5
low-threshold lasing
4
lasing active
4
active opal
4
opal photonic
4

Similar Publications

Planar 1D photonic crystals (1DPhCs), owing to their photonic bandgaps (PBGs) formed by unique structural interference, are widely utilized in light protection applications. Multifunctional coatings that integrate various light management functions are highly desired. In this study, we present the fabrication of dual-PBG 1DPhCs with high reflectance in both the blue and near-infrared (NIR) regions.

View Article and Find Full Text PDF

Anatomical characterization of Semi-arid Bignoniaceae using light and scanning electron microscopy.

BMC Plant Biol

January 2025

Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.

Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.

Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.

View Article and Find Full Text PDF

A conserved chaperone protein is required for the formation of a non-canonical type VI secretion system spike tip complex.

J Biol Chem

January 2025

Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1; Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1. Electronic address:

Type VI secretion systems (T6SS) are dynamic protein nanomachines found in Gram-negative bacteria that deliver toxic effector proteins into target cells in a contact-dependent manner. Prior to secretion, many T6SS effector proteins require chaperones and/or accessory proteins for proper loading onto the structural components of the T6SS apparatus. However, despite their established importance, the precise molecular function of several T6SS accessory protein families remains unclear.

View Article and Find Full Text PDF

Anisotropy is a fundamental property of both material and photonic systems. The interplay between material and photonic anisotropies, however, has hardly been explored due to the vastly different length scales. Here we demonstrate exciton polaritons in a 2D antiferromagnet, CrSBr, coupled with an anisotropic photonic crystal cavity, where the spin, atomic, and photonic anisotropies are strongly correlated.

View Article and Find Full Text PDF

Molecularly imprinted hydrogels embedded with two-dimensional photonic crystals for the detection of dexamethasone/betamethasone sodium phosphate.

Mikrochim Acta

January 2025

Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.

Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!