A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptive training of cortical feature maps for a robot sensorimotor controller. | LitMetric

Adaptive training of cortical feature maps for a robot sensorimotor controller.

Neural Netw

Centre for Robotics and Neural Systems, School of Computing and Mathematics, University of Plymouth, PL4 8AA Plymouth, United Kingdom.

Published: August 2013

This work investigates self-organising cortical feature maps (SOFMs) based upon the Kohonen Self-Organising Map (SOM) but implemented with spiking neural networks. In future work, the feature maps are intended as the basis for a sensorimotor controller for an autonomous humanoid robot. Traditional SOM methods require some modifications to be useful for autonomous robotic applications. Ideally the map training process should be self-regulating and not require predefined training files or the usual SOM parameter reduction schedules. It would also be desirable if the organised map had some flexibility to accommodate new information whilst preserving previous learnt patterns. Here methods are described which have been used to develop a cortical motor map training system which goes some way towards addressing these issues. The work is presented under the general term 'Adaptive Plasticity' and the main contribution is the development of a 'plasticity resource' (PR) which is modelled as a global parameter which expresses the rate of map development and is related directly to learning on the afferent (input) connections. The PR is used to control map training in place of a traditional learning rate parameter. In conjunction with the PR, random generation of inputs from a set of exemplar patterns is used rather than predefined datasets and enables maps to be trained without deciding in advance how much data is required. An added benefit of the PR is that, unlike a traditional learning rate, it can increase as well as decrease in response to the demands of the input and so allows the map to accommodate new information when the inputs are changed during training.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2013.03.004DOI Listing

Publication Analysis

Top Keywords

feature maps
12
map training
12
cortical feature
8
sensorimotor controller
8
traditional learning
8
learning rate
8
map
7
training
5
adaptive training
4
training cortical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!