Anthracene-polyamine conjugates inhibit the in vitro proliferation of the intraerythrocytic human malaria parasite Plasmodium falciparum, with 50% inhibitory concentrations (IC50s) in the nM to μM range. The compounds are taken up into the intraerythrocytic parasite, where they arrest the parasite cell cycle. Both the anthracene and polyamine components of the conjugates play a role in their antiplasmodial effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716131PMC
http://dx.doi.org/10.1128/AAC.00106-13DOI Listing

Publication Analysis

Top Keywords

anthracene-polyamine conjugates
8
conjugates inhibit
8
inhibit vitro
8
vitro proliferation
8
proliferation intraerythrocytic
8
plasmodium falciparum
8
intraerythrocytic plasmodium
4
falciparum parasites
4
parasites anthracene-polyamine
4
intraerythrocytic human
4

Similar Publications

Novel aromatic-polyamine conjugates as cholinesterase inhibitors with notable selectivity toward butyrylcholinesterase.

Bioorg Med Chem

June 2014

Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China. Electronic address:

Three types of aromatic-polyamine conjugates (6a-6s) were designed, synthesized and evaluated as potential inhibitors for cholinesterases (ChEs). The results showed that anthraquinone-polyamine conjugates (AQPCs) exhibited the most potent acetylcholinesterase (AChE) inhibitory activity with IC50 values from 1.50 to 11.

View Article and Find Full Text PDF

Anthracene-polyamine conjugates inhibit the in vitro proliferation of the intraerythrocytic human malaria parasite Plasmodium falciparum, with 50% inhibitory concentrations (IC50s) in the nM to μM range. The compounds are taken up into the intraerythrocytic parasite, where they arrest the parasite cell cycle. Both the anthracene and polyamine components of the conjugates play a role in their antiplasmodial effect.

View Article and Find Full Text PDF

Polyamine transport is elevated in many tumor types, suggesting that toxic polyamine-drug conjugates could be targeted to cancer cells via the polyamine transporter (PAT). We have previously reported the use of Chinese hamster ovary (CHO) cells and its PAT-deficient mutant cell line, CHO-MG, to screen anthracene-polyamine conjugates for their PAT-selective targeting ability. We report here a novel Drosophila-based model for screening anthracene-polyamine conjugates in a developing and intact epithelium ( Drosophila imaginal discs), wherein cell-cell adhesion properties are maintained.

View Article and Find Full Text PDF

Modeling the preferred shapes of polyamine transporter ligands and dihydromotuporamine-C mimics: shovel versus hoe.

J Med Chem

April 2006

Groupe Cycle Cellulaire, CNRS UMR 6061, IFR 97, Facult de Medecine, Universit Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cedex, France.

Preferred conformers generated from motuporamine and anthracene-polyamine derivatives provided insight into the shapes associated with polyamine transporter (PAT) recognition and potentially dihydromotuporamine C (4a) bioactivity. Molecular modeling revealed that N(1)-(anthracen-9-ylmethyl)-3,3-triamine (6a), N(1)-(anthracen-9-ylmethyl)-4,4-triamine (6b), N(1)-(anthracen-9-ylmethyl)-N(1)-ethyl-3,3-triamine (7a), N(1)-(anthracen-9-ylmethyl)-N(1)-ethyl-4,4-triamine (7b), and 4a all preferred a hoe motif. This hoe shape was defined by the all-anti polyamine shaft extending above the relatively flat, appended ring system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!