In this work, aligned zinc oxide (ZnO) nanorods were selectively hydrothermally grown on acetate-seeded spots on a gold substrate; the nanorods had an average length and diameter of 1.7μm and 240nm, respectively. Melatonin was imprinted into poly(ethylene-co-vinyl alcohol), EVAL, which was coated onto ZnO nanorod arrays. The ZnO nanorods not only increased the surface area for sensing target molecules, but also constituted an optical sensing element, as the ZnO fluorescence decreases when targets bind to the imprinted EVAL film; the fluorescence decrease, as a function of melatonin concentration, is well fit by a Langmuir adsorption isotherm. Poly(ethylene-co-vinyl alcohol) with 44mol% ethylene showed the best imprinting effectiveness (ratio of the fluorescence decrease on binding melatonin to imprinted vs. non-imprinted EVAL-coated ZnO nanorod arrays) among the several compositions studied. In real urine analysis, the MIP films responded linearly to added (exogenous) melatonin, even in the presence of many possible interfering compounds in urine. This demonstrates the feasibility of using these MIPs as part of a total urinalysis MIP system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2013.03.001DOI Listing

Publication Analysis

Top Keywords

polyethylene-co-vinyl alcohol
12
nanorod arrays
12
optical sensing
8
imprinted polyethylene-co-vinyl
8
zinc oxide
8
zno nanorods
8
melatonin imprinted
8
zno nanorod
8
fluorescence decrease
8
melatonin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!