A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of structured porous films by breath figures and phase separation processes: tuning the chemistry and morphology inside the pores using click chemistry. | LitMetric

Herein, a facile water-assisted templating technique, the so-called breath figures method, in combination with phase separation process, was employed to prepare multifunctional micropatterned films. Tetrahydrofuran solutions of incompatible ternary blends consisting of high-molecular-weight polystyrene, an amphiphilic block copolymer, polystyrene-b-poly[poly(ethylene glycol) methyl ether methacrylate] (PS40-b-P(PEGMA300)48), and a fluorinated homopolymer, poly(2,3,4,5,6-pentafluorostyrene) (P5FS21) were casted under humid atmosphere varying the proportion of the components. Two simultaneously occurring processes, i.e., the breath figures mechanism and the phase separation process, lead to unprecedented morphologies that could be tuned by simply varying the relative humidity or the composition of the blend. Confocal micro-Raman spectroscopy served to provide information about the location and distribution of the different functionalities in the films. As a result, both the amphiphilic block copolymer and the fluorinated polymer were mainly located in the cavities. Above a certain percentage of relative humidity, honeycomb structured films were obtained in which the block copolymer is distributed on the edge of the pore as a result of the affinity by the condensing water droplet and the coffee stain effect. The homopolymer is also preferentially situated at the pore edge, but forming spherical domains with narrow polydisperse sizes. Moreover, thiolated glucose molecules were specifically attached to the P5FS21 domains via thiol-para fluorine "click" reaction. Subsequently, the specific lectin (Concanavalin A, Canavalia ensiformis) was attached to the surface by conjugation with the glucose moieties. The successful binding of the Con A was demonstrated by the fluorescence, observed exclusively at the areas where P5FS21 domains are located. This nonlithographic method opens a new route to fabricate a huge variety of microstructured polymer films in terms of morphology not only for protein patterning, as illustrated in this manuscript, but also to produce a diversity of functional group arrangements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am400679rDOI Listing

Publication Analysis

Top Keywords

breath figures
12
phase separation
12
block copolymer
12
separation process
8
amphiphilic block
8
relative humidity
8
p5fs21 domains
8
films
5
fabrication structured
4
structured porous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!