Green infrastructure approaches have attracted increased attention from local governments as a way to lower flood risk and provide an array of other environmental services. The peer-reviewed literature, however, offers few estimates of the economic impacts of such approaches at the watershed scale. We estimate the avoided flood damages and the costs of preventing development of floodplain parcels in the East River Watershed of Wisconsin's Lower Fox River Basin. Results suggest that the costs of preventing conversion of all projected floodplain development would exceed the flood damage mitigation benefits by a substantial margin. However, targeting of investments to high-benefit, low-cost parcels can reverse this equation, generating net benefits. The analysis demonstrates how any flood-prone community can use a geographic-information-based model to estimate the flood damage reduction benefits of green infrastructure, compare them to the costs, and target investments to design cost-effective nonstructural flood damage mitigation policies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es303938c | DOI Listing |
Environ Manage
January 2025
School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, 4111, Australia.
Street and park trees often endure harsher conditions, including increased temperatures and drier soil and air, than those found in urban or natural forests. These conditions can lead to shorter lifespans and a greater vulnerability to dieback. This literature review aimed to identify confirmed causes of street and park tree dieback in urban areas from around the world.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Chair of Geoinformatics, Faculty of Geodesy, University of Zagreb, 10 000 Zagreb, Croatia.
Green infrastructure (GI) plays a crucial role in sustainable urban development, but effective mapping and analysis of such features requires a detailed understanding of the materials and state-of-the-art methods. This review presents the current landscape of green infrastructure mapping, focusing on the various sensors and image data, as well as the application of machine learning and deep learning techniques for classification or segmentation tasks. After finding articles with relevant keywords, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyzes) method was used as a general workflow, but some parts were automated (e.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China.
Soil stabilization technology has been applied for a long time in the infrastructure construction field. Currently, the use of waste materials as stabilizer is growing in attention, because it promises to develop green and high-performance soil stabilization efficiency. In this work, three common waste materials, including rice husk ash (RHA), steel slag (SS) and iron tailing (IT) powder, were selected and synergistically utilized with cement to prepare stabilized soil.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Sustainable Manufacturing Systems Centre, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK.
As urbanisation and infrastructure development continue to drive rising cement demand, the imperative to significantly reduce emissions from this emissions-intensive sector has become increasingly urgent, especially in the context of global climate goals such as achieving net zero emissions by 2050. This review examines the status, challenges and prospects of low-carbon cement technologies and mitigation strategies through the lens of the U.K.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Centro Interdisciplinar em Ciências da Saúde-CICS, ISAVE, Rua Castelo de Almourol nº 13, 4720-155 Amares, Portugal.
Health professionals have slowly integrated the environment and green areas into their prescriptions to connect patients with nature and outdoor activities. The World Health Organization recommends that everyone reside within 300 m of green regions to improve well-being and physical and mental health. The study aimed to explore the effects of urban and rural green areas on multiple physiological and functional variables, as well as evaluate the perception of individuals regarding the ease of use of these same spaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!