Thermochemical pretreatments of cellulosic biomass are known to improve cell wall enzymatic digestibility, while simultaneously releasing substantial amounts of soluble oligosaccharides. Profiling of oligosaccharides released during pretreatment yields information essential for choosing glycosyl hydrolases necessary for cost-effective conversion of cellulosic biomass to desired biofuel/biochemical end-products. In this report we present a methodology for profiling of soluble neutral oligosaccharides released from ammonia fiber expansion (AFEX™)-pretreated corn stover. Our methodology employs solid phase extraction (SPE) enrichment of oligosaccharides using porous graphitized carbon (PGC), followed by high performance liquid chromatography (HPLC) separation using a polymeric amine based column and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). For structural elucidation on the chromatographic time scale, nonselective multiplexed collision-induced dissociation was performed for quasi-simultaneous acquisition of oligosaccharide molecular and fragment masses in a single analysis. These analyses revealed glucans up to degree of polymerization (DP) 22 without modifications. Additionally, arabinoxylans up to DP=6 were detected in pretreated biomass extracts (post-enzymatic digestion). Cross-ring fragment ion abundances were consistent with assignment of linkages between sugar units in glucans and also xylose backbone in arabinoxylans as 1-4 linkages. Comprehensive profiling of soluble oligosaccharides also demonstrated decreases in levels of acetate esters of arabinoxylan oligosaccharides with concomitant increases in nonacetylated oligosaccharides that were consistent with earlier observations of 85% release of acetate esters by AFEX™ pretreatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2013.02.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!