Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry.

Anal Chem

Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States.

Published: May 2013

Organic ligands dominate the speciation of iron in the ocean. Little is known, however, about the chemical composition and distribution of these compounds. Here, we describe a method to detect low concentrations of organic Fe ligands using reverse-phase high-performance liquid chromatography (HPLC) tandem multicollector inductively coupled plasma mass spectrometry. This technique can be used to screen seawater and marine cultures for target compounds that can be isolated and structurally characterized. Sensitive detection (<1 picomole Fe) is achieved using an iron-free HPLC system to reduce background Fe levels, minimizing (40)Ar(16)O(+) interferences on (56)Fe with a hexapole collision cell, and introducing oxygen into the sample carrier gas to prevent the formation of reduced carbon deposits that decrease sensitivity. This method was tested with a chromatographic separation of five trace metal complexes that represent the polarity range likely found in seawater. Good separation was achieved with a 20 min water/methanol gradient, although sensitivity decreased by a factor of 2 at high organic solvent concentrations. Finally, Fe ligand complexes were detected from the organic extract of surface South Pacific seawater and from culture media of the siderophore producing cyanobacteria Synechococcus sp. PCC 7002.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac3034568DOI Listing

Publication Analysis

Top Keywords

seawater marine
8
high-performance liquid
8
organic ligands
8
detection iron
4
iron ligands
4
ligands seawater
4
marine cyanobacteria
4
cyanobacteria cultures
4
cultures high-performance
4
liquid chromatography-inductively
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!