Nanoporous polyelectrolyte membranes with hierarchical and unique pore architectures can be readily made via electrostatic complexation between imidazolium-based poly(ionic liquid)s and poly(acrylic acid) in a variety of morphologies. Coating the membrane onto the surface of an optical fiber resulted in a device with high pH-sensing performance in terms of the response rate and the sensitivity, due to the charge and porous nature of the membrane layer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja402100rDOI Listing

Publication Analysis

Top Keywords

hierarchically structured
4
structured nanoporous
4
nanoporous polyionic
4
polyionic liquid
4
liquid membranes
4
membranes facile
4
facile preparation
4
preparation application
4
application fiber-optic
4
fiber-optic sensing
4

Similar Publications

Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth.

Nanomicro Lett

December 2024

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

We performed a systematic review of the ictal semiology of temporo-frontal seizures with the aim to summarize the state-of-the-art anatomo-clinical correlations in the field, and help guide the interpretation of ictal semiology within the framework of presurgical evaluation. We conducted the systematic review and meta-analysis, and reported its results according to the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. We searched electronic databases (Scopus, PUBMED, Web of Science, and EMBASE) using relevant keywords related to temporal, frontal and sublobar structures, semiology, and electroencephalography/stereoelectroencephalography exploration.

View Article and Find Full Text PDF

Carbon Dots-Modified Hollow Mesoporous Photonic Crystal Materials for Sensitivity- and Selectivity-Enhanced Sensing of Chloroform Vapor.

Nanomicro Lett

December 2024

Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, People's Republic of China.

Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing.

View Article and Find Full Text PDF

Hierarchical existential prior based on expanded pseudo-label for crack detection.

Rev Sci Instrum

December 2024

School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, People's Republic of China.

Road crack detection approaches based on the image processing technique have attracted much attention during the past decade due to their convenience and efficiency, but most of them cannot achieve the expected performances due to the complex background interference and severe category imbalance of road images. This paper presents a hierarchical existential prior based on an expanded pseudo-label for crack detection. In particular, the framework contains three variants of U-Net, and each sub-network is trained by pseudo-labels generated by transforming semantic categories of non-crack pixels distributed in the neighborhoods of crack ones.

View Article and Find Full Text PDF

Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!