Microneedles are small-scale devices that may be used for drug delivery and biosensing. In this study, the forces required for mechanical failure, the modes of mechanical failure, as well as the mechanisms for microneedle penetration into porcine skin were examined. Microneedles produced from the acrylate-based polymer e-Shell 200 using an indirect rapid prototyping approach involving two-photon polymerization and poly(dimethylsiloxane) micromolding were found to possess sufficient strength for penetration of porcine skin. The failure forces were an order of magnitude greater than the forces necessary for full insertion into the skin. Bending was the most common form of failure; an increasing aspect ratio and a decreasing tip diameter were associated with lower failure forces. Video captured during skin penetration revealed that microneedle penetration into the skin occurred by means of a series of insertions and not by means of a single insertion event. Images obtained during and after skin penetration confirmed microneedle penetration of skin as well as transdermal delivery of lucifer yellow dye. These findings shed insight into the mechanisms of microneedle penetration and failure, facilitating design improvements for polymer microneedles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610923 | PMC |
http://dx.doi.org/10.1080/01694243.2012.705101 | DOI Listing |
Nano Lett
January 2025
School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China.
Eliminating cancer stem cells (CSCs) is essential for the effective treatment of triple-negative breast cancer (TNBC). This study synthesized Au@cerium-zinc composite core@shell nanoparticles (Au@Zn/CeO) that were subsequently conjugated with () to create the engineered bacterium AZCE, which was then combined with microneedle carriers and freeze-dried to obtain AZCE-MN. Upon implantation into TNBC tumors, the inherent properties of facilitate AZCE to penetrate the extracellular matrix and break through the basement membrane, enabling effective delivery of AZC to CSCs-enriched regions deep within the tumor.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China. Electronic address:
Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511443, China. Electronic address:
Psoriasis is a prevalent relapsing dermatological condition that often necessitates lifelong treatment. The distinctive thickening of the stratum corneum presents a challenge to drug penetration. The employment of microneedles has been demonstrated to enhance the transdermal drug delivery efficacy by creating multiple microchannels in the skin.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Microengineering and Nanoelectronics (IMEN), The National University of Malaysia, Bangi, Selangor 43600, Malaysia.
This article provides a comprehensive review of chitosan-based hydrogels for transdermal drug delivery. It covers various aspects including the chemical structure of chitosan and its derivatives, crosslinking agents, hydrogel morphology, and drug loading and release behaviors. The review draws on 16 studies sourced from Scopus, focusing on how the composition and structure of hydrogels influence drug release.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China. Electronic address:
Transdermal drug delivery presents a compelling alternative to both needle injection and oral ingestion of medication, as it enhances patient adherence and convenience through its non-invasive and painless administration method. The use of microneedles penetrates the barrier of the stratum corneum, facilitating the sustained delivery of drugs across the skin. However, their efficacy has been limited by the slow diffusion of molecules and often requires external triggers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!