Tempol prevents cardiac oxidative damage and left ventricular dysfunction in the PPAR-α KO mouse.

Am J Physiol Heart Circ Physiol

Unité (U)69, Institut National de la Santé et de la Recherche Médicale (INSERM), Labex-Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Université Paris Sud, Paris, France.

Published: June 2013

Peroxisome proliferator-activated receptor (PPAR)-α deletion induces a profound decrease in MnSOD activity, leading to oxidative stress and left ventricular (LV) dysfunction. We tested the hypothesis that treatment of PPAR-α knockout (KO) mice with the SOD mimetic tempol prevents the heart from pathological remodelling and preserves LV function. Twenty PPAR-α KO mice and 20 age-matched wild-type mice were randomly treated for 8 wk with vehicle or tempol in the drinking water. LV contractile parameters were determined both in vivo using echocardiography and ex vivo using papillary muscle mechanics. Translational and posttranslational modifications of myosin heavy chain protein as well as the expression and activity of major antioxidant enzymes were measured. Tempol treatment did not affect LV function in wild-type mice; however, in PPAR-α KO mice, tempol prevented the decrease in LV ejection fraction and restored the contractile parameters of papillary muscle, including maximum shortening velocity, maximum extent of shortening, and total tension. Moreover, compared with untreated PPAR-α KO mice, myosin heavy chain tyrosine nitration and anion superoxide production were markedly reduced in PPAR-α KO mice after treatment. Tempol also significantly increased glutathione peroxidase and glutathione reductase activities (~ 50%) in PPAR-α KO mice. In conclusion, these findings demonstrate that treatment with the SOD mimetic tempol can prevent cardiac dysfunction in PPAR-α KO mice by reducing the oxidation of contractile proteins. In addition, we show that the beneficial effects of tempol in PPAR-α KO mice involve activation of the glutathione peroxidase/glutathione reductase system.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00669.2012DOI Listing

Publication Analysis

Top Keywords

ppar-α mice
28
ppar-α
10
mice
10
tempol
8
tempol prevents
8
left ventricular
8
ventricular dysfunction
8
dysfunction ppar-α
8
sod mimetic
8
mimetic tempol
8

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

Inoculation of Bothrops jararaca snake venom (BjV) induces thrombocytopenia in humans and various animal species. Although several BjV toxins acting on hemostasis have been well characterized in vitro, it is not known which one is responsible for inducing thrombocytopenia in vivo. In previous studies, we showed that BjV incubated with metalloproteinase or serine proteinase inhibitors and/or anti-botrocetin antibodies still induced thrombocytopenia in rats and mice.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.

View Article and Find Full Text PDF

To understand the action mechanism of probiotics against postmenopausal symptoms, we examined the effects of Lactococcus lactis P32 (P) and Bifidobacterium bifidum P45 (P), which suppressed interleukin (IL)-6 and receptor activator of nuclear factor-κB (RANK) ligand (RNAKL) expression in Gardnerella vaginalis (Gv)-stimulated macrophages, on vaginitis, osteoporosis, and depression/cognitive impairment (DC) in mice with vaginally infected Gv, ovariectomy (Ov), or Ov/Gv (oG). Oral administration of P or P decreased Gv-induced DC-like behavior and tumor necrosis factor (TNF)-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, hypothalamus, hippocampus, and colon, while Gv-suppressed bone osteoprotegerin and brain serotonin and brain-derived neurotrophic factor (BDNF) levels increased. They partially shifted vaginal and gut dysbiosis in Gv-infected mice to the gut microbiota composition in normal control mice.

View Article and Find Full Text PDF

Diabetes nephropathy (DN) is a prevalent and severe microvascular diabetic complication. Despite the recent developments in germacrone-based therapies for DN, the underlying mechanisms of germacrone in DN remain poorly understood. This study used comprehensive bioinformatics analysis to identify critical microRNAs (miRNAs) and the potential underlying pathways related to germacrone activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!