Non-coding transcription at cis-regulatory elements: computational and experimental approaches.

Methods

Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy. Electronic address:

Published: September 2013

Mammalian genomes are pervasively transcribed, generating mostly RNAs with no coding potential that display different size, structure and interspecies sequence conservation. A prominent contribution to the ncRNA pool comes from the transcription of cis-regulatory elements, namely promoters, enhancers and locus control regions. While this phenomenon has been extensively documented, possible roles of such ncRNAs in gene regulation are still unclear. Addressing this issue will require experimental strategies dealing with the low abundance of enhancer-templated ncRNAs and aimed at specifically dissecting the relative role of transcription per se vs. RNA products. In this review, we first focus on the identification and characterization of cis-regulatory elements, highlighting the differences between emerging classes of ncRNAs associated to specific chromatin signatures. We then discuss current experimental strategies to dissect the function of nc transcription and computational approaches to the analysis and classification of regulatory sequences identified in next-generation sequencing experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2013.03.021DOI Listing

Publication Analysis

Top Keywords

cis-regulatory elements
12
transcription cis-regulatory
8
experimental strategies
8
non-coding transcription
4
elements computational
4
computational experimental
4
experimental approaches
4
approaches mammalian
4
mammalian genomes
4
genomes pervasively
4

Similar Publications

Mammalian genomes contain millions of regulatory elements that control the complex patterns of gene expression. Previously, The ENCODE consortium mapped biochemical signals across many cell types and tissues and integrated these data to develop a Registry of 0.9 million human and 300 thousand mouse candidate cis-Regulatory Elements (cCREs) annotated with potential functions .

View Article and Find Full Text PDF
Article Synopsis
  • Cis-regulatory elements play a key role in gene expression by connecting enhancers and promoters through 3D chromosomal structures, and changes in these systems may be linked to genetic diseases.
  • Klotho, an anti-aging protein important for kidney health, has unclear regulatory mechanisms in chronic kidney disease (CKD).
  • In this study, researchers used chromosome conformation capture to explore the chromatin structure near the Klotho gene in CKD tissues, finding that regulatory activities decreased and specific DNA sites lost their function compared to healthy tissues.
View Article and Find Full Text PDF

The Arabidopsis Knotted1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor that operates as a central component of the gene regulatory network (GRN) controlling shoot apical meristem formation and maintenance. It regulates the expression of target genes that include transcriptional regulators associated with meristem function, particularly those involved in pluripotency and cellular differentiation, as well as genes involved in hormone metabolism and signaling. Previous studies have identified KNOX-regulated genes and their associated cis-regulatory elements in several plant species.

View Article and Find Full Text PDF

Expression of SRY-box transcription factor 17 (Sox17) in the endodermal region caudal to the hepatic diverticulum during late gastrulation is necessary for hepato-pancreato-biliary system formation. Analysis of an allelic series of promoter-proximal mutations near the transcription start site (TSS) 2 of Sox17 has revealed that gallbladder (GB) and extrahepatic bile duct (EHBD) development is exquisitely sensitive to Sox17 expression levels. Deletion of a SOX17-binding cis-regulatory element in the TSS2 promoter impairs GB&EHBD development by reducing outgrowth of the nascent biliary bud.

View Article and Find Full Text PDF

Construction of the KNOX-BELL interaction network and functional analysis of CmBLH2 under cold stress in Chrysanthemum morifolium.

Int J Biol Macromol

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China. Electronic address:

The three-amino-acid-loop-extension (TALE) homeodomain transcription factor family, including the KNOX and BELL subfamilies, is one of the largest gene families in plants. This family encodes plant-specific transcription factors that play critical roles in regulating plant growth, development, and stress responses. However, their interaction network, as well as resistant functional mechanism in is rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!