Unlabelled: Metallothioneins (MTs) are small cysteine-rich proteins with the ability to coordinate heavy metal atoms through metal-thiolate bonds, which are widely distributed among the animal and plant kingdoms. Multifunctional roles for MTs have been proposed, including their ability to scavenger various radicals and reactive oxygen species. In the present article we summarize available information of four MT polypeptides from different organisms, forming metal complexes with Zn(II), Cd(II) or Cu (I) ions. Non-enzymatic modifications of MTs under ionizing radiations and their consequences on the lipidic membrane compartment were studied by Raman spectroscopy and a biomimetic model, respectively. The latter is based on liposome technology and allows to measure the trans unsaturated fatty acid content as a result of reductive radical stress on MTs.
Biological Significance: The effect of radical stress on the cell metabolism and functions is a very active field of research connecting various disciplines in life sciences. In this contest tandem radical damage has been the subject of recent investigations that pointed out its harmfulness in the general scenario of establishing the consequences of radical stress. By using biomimetic models of tandem damage we have for the first time tested the capability of metallothioneins (MTs), small metalloproteins rich of Cys residues, to damage another cell compartment like lipid membranes when they are undergone to reductive radical stress. The connection of MT reactivity with membrane lipid transformation can give a contribution to the puzzling context of radical stress occurring to biomolecules and the role as biological signaling. To this purpose, MT polypeptides from different organisms, exhibiting different sequence peculiarities, have been analyzed here. The spectroscopic analysis of these systems has allowed to identify modifications affecting metal-thiolate clusters, cystines, and Met residues, acting as efficient interceptors of reducing radical species. The chemical mechanism involving sulfur-containing moieties under reductive conditions discloses new scenarios that bring to the loss of sulfur-centered radicals by desulfurization reactions that change the natural sequences of MTs. Ala is a genetically coded amino acid, therefore the mutation of Cys to Ala occurring to a sequence by the radical process so far discussed, corresponds to a post-translational modification. Research on such mutation connected also to a free radical stress will be important to contribute for a complete picture of the degeneration associated to diseases and aging. Analogously, the Met to Aba mutation occurring after reductive stress transforms a natural amino acid into a natural, non-genetically-coded congener. Aba corresponds to a homologation of the alkyl chains normally present in genetically codified amino acids, such as methyl (in Ala) and isopropyl (in Leu), with an ethyl unit. Based on alkyl substitution, this modification can therefore be studied in order to understand its general consequences on the structure-activity relationships in proteins and, in particular, on molecular interactions. This article is part of a Special issue entitled: Posttranslational Protein modifications in biology and Medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2013.02.005 | DOI Listing |
Foods
December 2024
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary.
The red blood cell (RBC) membrane is unique and crucial for maintaining structural-functional relationships. Maternal smoking induces significant changes in the morphological, rheological, and functional parameters of both maternal and foetal RBCs, mainly due to the continuous generation of the free radicals. The major aim of this study was to follow the consequences of a secondary stressor, like fungal infection, on the already compromised RBC populations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.
View Article and Find Full Text PDFMolecules
January 2025
Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico.
Inflammation, oxidative stress, and metabolic diseases are intricately linked in a complex, self-reinforcing relationship. Inflammation can induce oxidative stress, while oxidative stress can trigger inflammatory responses, creating a cycle that contributes to the development and progression of metabolic disorders; in addition, these effects can be observed at systemic and local scales. Both processes lead to cellular damage, mitochondrial dysfunction, and insulin resistance, particularly affecting adipose tissue, the liver, muscles, and the gastrointestinal tract.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!