AMP deaminase 3 plays a critical role in remote reperfusion lung injury.

Biochem Biophys Res Commun

Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University, Japan.

Published: April 2013

Remote reperfusion lung injury following skeletal muscle ischemia and reperfusion accounts for high morbidity and mortality. AMP deaminase (AMPD), a key enzyme for nucleotide cycle, has been implicated in the regulation of this phenomenon. However, the function of Ampd2 and Ampd3 subtype has not been elucidated in remote reperfusion rodent lung injury. We utilized AMPD3 and AMPD2-deficient mice. The two types of AMPD-deficient mice and wild-type (WT) littermates were subjected to ischemia-reperfusion injury. After 3h bilateral hind-limb ischemia and reperfusion, AMPD3 mRNA, AMPD activity and inosine monophosphate (IMP) increased significantly in WT and AMPD2-deficient mice lungs, while they did not show significant alterations in AMPD3-deficient mice lungs. Genetic inactivation of Ampd3 resulted in markedly accelerated myeloperoxidase (MPO) activity along with exaggerated neutrophils infiltration and hemorrhage in the lungs compared to WT and AMPD2-deficient mice, furthermore, IMP treatment significantly attenuated MPO activity and neutrophils infiltration in WT and the two types of AMPD-deficient mice lungs after 3h reperfusion. These findings demonstrate for the first time in AMP-deficient mice models that AMPD3 plays a critical role in remote reperfusion lung injury via generation of IMP and validate the potential to use IMP into the clinical arena to attenuate remote ischemia-reperfusion lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2013.03.056DOI Listing

Publication Analysis

Top Keywords

lung injury
20
remote reperfusion
16
reperfusion lung
12
ampd2-deficient mice
12
mice lungs
12
amp deaminase
8
plays critical
8
critical role
8
role remote
8
ischemia reperfusion
8

Similar Publications

Angiotensin-Converting Enzyme 2 Enhances Autophagy via the Consumption of miR-326 in a Mouse Model of Acute Lung Injury.

Biochem Genet

January 2025

Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.

Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.

View Article and Find Full Text PDF

Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ.

View Article and Find Full Text PDF

Introduction: Veno-arterial extracorporeal membrane oxygenation is frequently considered and implemented to help manage patients with cardiogenic shock from acute poisoning. However, utilization of veno-venous extracorporeal membrane oxygenation in acutely poisoned patients is largely unknown.

Method: We conducted a retrospective study analyzing the epidemiologic, clinical characteristics and survival of acutely poisoned patients placed on veno-venous extracorporeal membrane oxygenation using the Extracorporeal Life Support Organization registry.

View Article and Find Full Text PDF

Unlabelled: The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury.

View Article and Find Full Text PDF

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!