In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.02.016DOI Listing

Publication Analysis

Top Keywords

cod nh3-n
12
nh3-n 24-dcp
12
24-dcp removal
12
recycled paper
12
paper wastewater
12
response surface
8
surface methodology
8
methodology rsm
8
pilot-scale granular
8
granular activated
8

Similar Publications

The role of plant uptake in total phosphorous and total nitrogen removal in vegetated bioretention cells using vetiver and cattail.

Chemosphere

September 2024

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China. Electronic address:

Bioretention cells have emerged as a prominent strategy for mitigating pollutant loads within urban stormwater runoff. This study delves into the role of plant uptake in the simultaneous removal of nitrogen and phosphorus compounds within these systems. Three bioretention cells-CP, P1, and P2-were constructed using local soil, C33 sand, and gravel.

View Article and Find Full Text PDF

This study aims to improve COD, NH-N, and turbidity removal from Bingöl's leachate using a single-reactor integrated electrocoagulation (EC)-coal-based powdered activated carbon (CBPAC) process under various experimental conditions. In the EC-CBPAC process, three stainless-steel cathodes and three aluminum electrodes were connected to the negative and positive terminals of the power supply, respectively. The initial concentrations in the leachate were 1044 mg O/L for COD, 204 mg/L for NH-N, and 57 NTU (or 71.

View Article and Find Full Text PDF

This study aims to determine the COD, NH-N and turbidity disposal efficiencies from leachate in the Bingöl landfill and highlight the electrocoagulation (EC) process's performance in removing these pollutants. After establishing that landfill leachate was intermediate aged, its characteristics were identified using physical, chemical and elemental analyses. Six parallel-connected electrode plates with stainless steel as the cathode and aluminium as the anode were used to construct an electrocoagulation cell.

View Article and Find Full Text PDF

With the development of the economy, the problem of urban black odorous water bodies has become increasingly significant, having a serious impact on the environment. As important means of remediating aquatic environments, pollution source control and water replenishment are of great significance in improving water quality. This study takes the Qianshan River Basin in Zhuhai City as its study area to simulate their effects on the improvement of water quality.

View Article and Find Full Text PDF

Despite the widespread application of decentralized wastewater treatment (WWT) facilities in China, relatively few research has used the multi-media biological filter (MMBF) facilities to investigate the microorganism characteristics. This study utilizes 16S rRNA high-throughput sequencing (HTS) technology to examine the microbial biodiversity of a representative wastewater treatment (WWT) system in an expressway service area. The pathways of nitrogen removal along the treatment route were analyzed in conjunction with water quality monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!