SYD-2/liprin-α is a multi-domain protein that associates with and recruits multiple active zone molecules to form presynaptic specializations. Given SYD-2's critical role in synapse formation, its synaptogenic ability is likely tightly regulated. However, mechanisms that regulate SYD-2 function are poorly understood. In this study, we provide evidence that SYD-2's function may be regulated by interactions between its coiled-coil (CC) domains and sterile α-motif (SAM) domains. We show that the N-terminal CC domains are necessary and sufficient to assemble functional synapses while C-terminal SAM domains are not, suggesting that the CC domains are responsible for the synaptogenic activity of SYD-2. Surprisingly, syd-2 alleles with single amino acid mutations in the SAM domain show strong loss of function phenotypes, suggesting that SAM domains also play an important role in SYD-2's function. A previously characterized syd-2 gain-of-function mutation within the CC domains is epistatic to the loss-of-function mutations in the SAM domain. In addition, yeast two-hybrid analysis showed interactions between the CC and SAM domains. Thus, the data is consistent with a model where the SAM domains regulate the CC domain-dependent synaptogenic activity of SYD-2. Taken together, our study provides new mechanistic insights into how SYD-2's activity may be modulated to regulate synapse formation during development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930023 | PMC |
http://dx.doi.org/10.1016/j.mcn.2013.03.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!