Macroautophagy was originally discovered as a nutrient salvage pathway during starvation. By now it has not only become clear that degradation of cytoplasmic constituents via transport by autophagosomes to lysosomes can be used for innate and adaptive immunity, but that the core machinery assists antigen presentation to the immune system by a variety of vesicular transport pathways. All of these rely on the presentation of small protein waste fragments, which are generated by a variety of catabolic pathways, including macroautophagy, on major histocompatibility complex (MHC) molecules. In this review, we will point out how classical macroautophagy, as well as phagocytosis and exocytosis, which both benefit from the core autophagic machinery, assist in antigen presentation on MHC class I and II molecules to CD8+ and CD4+ T cells, respectively. Finally to high-light that macroautophagy is always intimately interconnected with cell death in addition to the various supported vesicular transport function, its role in lymphocyte, especially T cell, development and function will be discussed. From this body of work a picture is emerging that the core machinery of macroautophagy can be used for a variety of vesicular transport pathways and to modulate cell survival, besides its classical role in delivering intracellular material for lysosomal degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2013.03.001DOI Listing

Publication Analysis

Top Keywords

antigen presentation
12
vesicular transport
12
assists antigen
8
presentation immune
8
immune system
8
core machinery
8
variety vesicular
8
transport pathways
8
macroautophagy
5
checking garbage
4

Similar Publications

Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer.

Cancer Drug Resist

December 2024

Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.

Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways.

View Article and Find Full Text PDF

Mechanisms of immunotherapy resistance in small cell lung cancer.

Cancer Drug Resist

December 2024

Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA.

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a poor prognosis. Although the addition of immunotherapy to chemotherapy has modestly improved outcomes, most patients rapidly develop resistance. Resistance to immunotherapy can be broadly categorized into primary resistance and acquired resistance, as proposed by the Society for Immunotherapy of Cancer (SITC) consensus definition.

View Article and Find Full Text PDF

Introduction: Ankylosing spondylitis (AS) is a chronic inflammatory disorder that primarily affects the spine and sacroiliac joints, leading to pain, stiffness, and progressive thoracolumbar kyphotic deformity. A key complication in advanced AS is the development of Andersson lesions (AL), degenerative vertebral lesions resulting from the disease's progression. These lesions can cause significant mechanical pain, often mistaken for the chronic discomfort associated with AS.

View Article and Find Full Text PDF

The association between heterozygous C4 deficiency and systemic lupus erythematosus (SLE) is unclear. There is a lack of data in South Asian Indians on any possible association of C4A and C4B null alleles with lupus. We aimed to study the prevalence of C4A and C4B null alleles in a cohort of SLE patients with persistently low C4 levels compared to healthy controls (HC).

View Article and Find Full Text PDF

Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy.

Cell Commun Signal

January 2025

Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.

Background: Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed.

Methods: Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!