Introduction And Objectives: Nosocomial infections, also known as hospital-acquired infections, has become one of the most important health problems in health care units worldwide. The presented study aims to determine the average amount of microorganism loads and to show that the atmospheres of the two hospitals can be a potential source regarding nosocomial infections. The effect of surface and floor disinfection processes in the two hospitals and the antibiotic susceptibility of the bacterial isolates were also evaluated.
Materials And Methods: Microorganisms were isolated from air samples collected from different areas (patient wards, corridors, operating theatres and postoperative units) of the two hospitals in Izmir. Sampling was conducted between December 2006 - March 2007.
Results: During the 3-month sampling period, the average number of live microorganisms in the air samples collected from second-class environments in the hospital 1 and the hospital 2 was found to be 224.44 and 536.66 cfu/m(3) , respectively. The average number of microorganisms in hospital 2 collected before the disinfection process was higher than those after the disinfection process. However, because of the closure of the air-conditioning system and the hepa filters after the disinfection process, this was reversed in hospital 1. In total, 54 and 42 isolates were obtained from hospital 1 and hospital 2, respectively. 49 isolates from hospital 1 and 35 isolates from hospital 2 were identified as Staphylacoccus sp. The remaining isolates were identified as Aerococcus sp. and Enterococcus sp. Pseudomonas sp. was not determined in the air samples of the two hospitals.
Conclusions: It was detected that the microbial loads in the atmospheres of the two hospitals studied varied greatly depending on the number of people in the environment. As the results indicate, the total number of microorganisms in the atmospheres of operating theatres in both hospitals does not pose a threat according to the Air Microbe Index.
Download full-text PDF |
Source |
---|
Int J Nanomedicine
January 2025
State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.
Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.
Food Chem
January 2025
Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China. Electronic address:
Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Geosciences, Atmospheric Science Division, Texas Tech University, Lubbock, TX, USA; National Wind Institute, Texas Tech University, Lubbock, TX, USA. Electronic address:
Understanding the kinematics of aerosol horizontal transport and vertical mixing near the surface, within the atmospheric boundary layer (ABL), and in the overlying free troposphere (FT) is critical for various applications, including air quality and weather forecasting, aviation, road safety, and dispersion modeling. Empirical evidence of aerosol mixing processes within the ABL during synoptic-scale events over arid and semiarid regions (i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).
View Article and Find Full Text PDFNature
January 2025
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.
Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!