Compared with atoms, molecules have a rich internal structure that offers many opportunities for technological and scientific advancement. The study of this structure could yield critical insights into quantum chemistry, new methods for manipulating quantum information, and improved tests of discrete symmetry violation and fundamental constant variation. Harnessing this potential typically requires the preparation of cold molecules in their quantum rovibrational ground state. However, the molecular internal structure severely complicates efforts to produce such samples. Removal of energy stored in long-lived vibrational levels is particularly problematic because optical transitions between vibrational levels are not governed by strict selection rules, which makes laser cooling difficult. Additionally, traditional collisional, or sympathetic, cooling methods are inefficient at quenching molecular vibrational motion. Here we experimentally demonstrate that the vibrational motion of trapped BaCl(+) molecules is quenched by collisions with ultracold calcium atoms at a rate comparable to the classical scattering, or Langevin, rate. This is over four orders of magnitude more efficient than traditional sympathetic cooling schemes. The high cooling rate, a consequence of a strong interaction potential (due to the high polarizability of calcium), along with the low collision energies involved, leads to molecular samples with a vibrational ground-state occupancy of at least 90 per cent. Our demonstration uses a novel thermometry technique that relies on relative photodissociation yields. Although the decrease in vibrational temperature is modest, with straightforward improvements it should be possible to produce molecular samples with a vibrational ground-state occupancy greater than 99 per cent in less than 100 milliseconds. Because sympathetic cooling of molecular rotational motion is much more efficient than vibrational cooling in traditional systems, we expect that the method also allows efficient cooling of the rotational motion of the molecules. Moreover, the technique should work for many different combinations of ultracold atoms and molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11937DOI Listing

Publication Analysis

Top Keywords

sympathetic cooling
12
vibrational
9
cooling
8
vibrational cooling
8
cold molecules
8
atoms molecules
8
internal structure
8
vibrational levels
8
vibrational motion
8
molecular samples
8

Similar Publications

This review emphasises the importance of the cardiovascular response to facial cooling (FC) and breath holding in both sexes. The trigemino-cardiac reflex, triggered by FC, reduces heart rate (HR) and constricts blood vessels. When combined with breath holding, this effect intensifies, enhancing the cardiodepressive impact.

View Article and Find Full Text PDF

Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.

View Article and Find Full Text PDF

Background: Although brief skin cooling (BSC) is widely used in sports medicine and rehabilitation for its positive effects on motor performance, the mechanism underlying this motor facilitation effect remains unclear.

Objectives: To explore the hypothesis that BSC enhances muscle force generation, with cold-induced sympathetic activation leading to heightened muscle spindle sensitivity, thereby contributing to this effect.

Methods: The study involved two experiments.

View Article and Find Full Text PDF

Fast Photon-Mediated Entanglement of Continuously Cooled Trapped Ions for Quantum Networking.

Phys Rev Lett

August 2024

Duke Quantum Center, Departments of Electrical and Computer Engineering and Physics, Duke University, Durham, North Carolina 27708, USA.

We entangle two cotrapped atomic barium ion qubits by collecting single visible photons from each ion through in vacuo 0.8 NA objectives, interfering them through an integrated fiber beam splitter and detecting them in coincidence. This projects the qubits into an entangled Bell state with an observed fidelity lower bound of F>94%.

View Article and Find Full Text PDF

Perfusion index (PI), the ratio between variable pulsatile (AC) and non-pulsatile (DC) components in a photoplethysmographic (PPG) signal, is an indirect and non-invasive measure of peripheral perfusion. PI has been widely used in assessing sympathetic block success, and monitoring hemodynamics in anesthesia and intensive care. Based on the principle of dual-wavelength depolarization (DWD) of skin tissues, we propose to investigate its opportunity in quantifying the skin perfusion contactlessly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!