Objectives: β-thalassemia and sickle cell disease are hemoglobinopathies with reduced/absent β chains in the former and dysfunctional β chains in the latter. In both conditions, up-regulation of hemoglobin F through demethylation can alleviate the symptoms. This can be attained with drugs such as thalidomide and sodium butyrate.

Materials And Methods: This study was performed on erythroid progenitors derived from CD133+ cord blood stem cells. Erythroid progenitors were treated with thalidomide and sodium butyrate in single and combined groups. Colony-formation potential in each group was evaluated by the colony assay. Real-time polymerase chain reaction (RT-PCR) was used to evaluate the effect of these drugs on histone H3 lysine 27 (H3K27) methylation patterns.

Findings: Compared to other treatment groups, CD133+ cells treated with thalidomide alone produced more hematopoietic colonies. Thalidomide alone was also more effective in decreasing H3K27 methylation.

Conclusions: Thalidomide shows superiority to sodium butyrate as a hypomethylating agent in this cell culture study, and it has the potential to become conventional treatment for sickle cell disease and β-thalassemia.

Download full-text PDF

Source
http://dx.doi.org/10.1532/LH96.12003DOI Listing

Publication Analysis

Top Keywords

erythroid progenitors
12
treated thalidomide
12
thalidomide sodium
12
sodium butyrate
12
progenitors treated
8
sickle cell
8
cell disease
8
thalidomide
6
evaluation histone
4
histone methylation
4

Similar Publications

Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the and genes in hematopoietic progenitors and the generation of monocytes that release CAL.

View Article and Find Full Text PDF

Toxic Effects of Cobalt on Erythroid Progenitor Cells.

Chem Res Toxicol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs).

View Article and Find Full Text PDF

Therapeutic Potential of Carbon Dots Derived from Phytochemicals as Nanozymes Exhibiting Superoxide Dismutase Activity for Anemia.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Anemia is a potentially life-threatening blood disorder caused by an insufficient erythroblast volume in the circulatory system. Self-renewal failure of erythroblast progenitors is one of the key pathological factors leading to erythroblast deficiency. However, there are currently no effective drugs that selectively target this process.

View Article and Find Full Text PDF

Before committing to an erythroid cell lineage, hematopoietic stem cells differentiate along a myeloid cell pathway to generate megakaryocyte-erythroid biopotential progenitor cells in bone marrow. Recent studies suggest that erythroid progenitors (EryPs) could be generated at the level of common myeloid progenitors (CMPs). However, due to a lack of suitable markers, little is known about the early differentiation of these committed EryP cells during CMP development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!