Background: Enumeration of circulating tumor cells (CTC) from whole blood permits monitoring of patients with breast carcinoma. Analysis of apoptosis & Bcl-2 expression in CTC might add additional prognostic and predictive information. We estimated the degree of these markers in CTC from patients being treated for metastatic breast cancer.
Methods: Eighty-three evaluable patients initiating a new therapy for metastatic breast cancer were enrolled. Whole blood was collected at baseline, at one of three short term time windows (24, 48, or 72 h) after initiating treatment, and at first follow-up (3-5 weeks). CTC were isolated, enumerated, and expression of M30 and Bcl2 was determined using the CellSearch(®) System.
Results: At baseline, window, and 3-5 weeks post-treatment, 41/80 (51%), 40/80 (50%) and 21/75 (28%) patients had ≥5 CTC, respectively. At baseline, the proportion of CTC-apoptosis (M30) was inversely correlated with CTC number, and modestly inversely correlated with CTC-Bcl-2. As expected, higher CTC levels at baseline or first follow-up were associated with worse prognosis. Surprisingly, in patients with elevated CTC, higher levels of CTC-apoptosis were associated with worse prognosis, while higher CTC-Bcl-2 levels correlated with better outcomes.
Conclusions: CTC apoptosis and expression of Bcl-2 can be analytically determined in patients with metastatic breast cancer and may have biological and clinical implications. Characterization of CTC for these and other markers could further increase the utility of CTC monitoring patients in clinical investigations of new anti-neoplastic agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528485 | PMC |
http://dx.doi.org/10.1016/j.molonc.2013.02.013 | DOI Listing |
J Clin Oncol
January 2025
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.
Clin Cancer Res
January 2025
The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Purpose: Trastuzumab deruxtecan (T-DXd) is currently approved for treating metastatic breast cancer (MBC) which is HER2-positive (immunohistochemistry [IHC] score of 3+ or ISH positivity) or HER2-low (IHC score of 1+ or IHC 2+/ISH negative), as well as for HER2-positive gastric cancer, HER2-mutant lung cancer, and HER2 overexpressing solid tumors. Given the increasing utilization of T-DXd, we sought to determine how HER2 receptor status might change following T-DXd therapy.
Design: We retrospectively reviewed patients with MBC who received T-DXd at The University of Texas MD Anderson Cancer Center.
Angew Chem Int Ed Engl
January 2025
Michigan State University, Biochemistry and Molecular Biology, Biochemistry Building, 603 Wilson Rd, Lunt Lab, 48824, 48824, East Lansing, UNITED STATES OF AMERICA.
Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-].
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA.
Purpose: Interstitial lung disease (ILD) is a well described and potentially fatal complication of trastuzumab-deruxtecan (T-DXd). It is currently unknown if specific monitoring is beneficial in the early detection of ILD in these patients. We describe the efficacy and feasibility of a novel ILD monitoring protocol in breast cancer patients treated with T-DXd at our institution.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!