Microalgae are among the most diverse organisms on the planet, and as a result of symbioses and evolutionary selection, the configuration of core metabolic networks is highly varied across distinct algal classes. The differences in photosynthesis, carbon fixation and processing, carbon storage, and the compartmentation of cellular and metabolic processes are substantial and likely to transcend into the efficiency of various steps involved in biofuel molecule production. By highlighting these differences, we hope to provide a framework for comparative analyses to determine the efficiency of the different arrangements or processes. This sets the stage for optimization on the based on information derived from evolutionary selection to diverse algal classes and to synthetic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2013.02.027 | DOI Listing |
BMC Biol
January 2025
Department of Environmental Sciences, University of Basel, Basel, Switzerland.
Background: Treponemal diseases are a significant global health risk, presenting challenges to public health and severe consequences to individuals if left untreated. Despite numerous genomic studies on Treponema pallidum and the known possible biases introduced by the choice of the reference genome used for mapping, few investigations have addressed how these biases affect phylogenetic and evolutionary analysis of these bacteria. In this study, we ascertain the importance of selecting an appropriate genomic reference on phylogenetic and evolutionary analyses of T.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.
Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.
Mol Biotechnol
January 2025
Amity Institute of Biotechnology, Amity University, Kolkata, India.
Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones.
View Article and Find Full Text PDFGigascience
January 2025
Centre for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
Background: A thorough analysis of genome evolution is fundamental for biodiversity understanding. The iconic monotremes (platypus and echidna) feature extraordinary biology. However, they also exhibit rearrangements in several chromosomes, especially in the sex chromosome chain.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China.
Since the inception of hybrid rice technology 50 years ago, it has not only substantially increased rice yield per unit area but also expedited the development of high-quality rice varieties. However, the evolutionary characteristics of hybrid rice quality remain unclear. To address this gap, it is imperative to leverage more representative and comprehensive hybrid rice resources to analyze phenotypic variation diversity and its primary genetic basis, thereby offering more efficient guidance for molecular breeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!