In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2013.02.004 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 602 00, Brno, Czech Republic.
We investigated the production of highly reactive oxygen species (ROS) in solutions undergoing treatment using CaviPlasma (CP) technology. This technology combines plasma discharge with hydrodynamic cavitation. This study focused on factors such as pH, conductivity, presence of salts and organic matter affecting ROS formation and their stability in solutions.
View Article and Find Full Text PDFChem Phys Lipids
November 2024
CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina. Electronic address:
Cavitation-based technologies, such as ultrasound (or acoustic cavitation, AC) and hydrodynamic cavitation (HC), are gaining interest among green processing technologies due to their cost effectiveness in operation, toxic solvent use reduction, and ability to obtain superior processed products, compared to conventional methods. Both AC and HC generate bubbles, but their effects may differ and it is difficult to make comparisons as both are based on different phenomena and are subject to different operational variables. AC is one of the most used techniques in extraction and homogenization processes at the laboratory level.
View Article and Find Full Text PDFFoods
November 2024
Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
In this study, hydrodynamic cavitation technology was utilized to prepare conjugates of soy protein isolate (SPI) with polyphenols, including resveratrol (RA) and polydatin (PD) from the stilbene category, as well as arctiin (AC) and magnolol (MN) from the lignan category. To investigate the effects of hydrodynamic cavitation treatment on the interactions between SPI and these polyphenols, the polyphenol binding capacity with SPI was measured and the changes in the exposed sulfhydryl and free amino contents were analyzed. Various methods, including ultraviolet-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy, were also used to characterize the structural properties of the SPI-polyphenol conjugates.
View Article and Find Full Text PDFHeliyon
November 2024
Institute for the Protection of Cultural Heritage of Slovenia, Poljanska 40, 1000, Ljubljana, Slovenia.
This study investigates the effect of hydraulic shock waves on inactivation of MS-2 bacteriophage, a norovirus surrogate. A falling circular jet of water spiked with the MS-2 (∼1000 PFU/mL) was repeatedly impacted by a rotating blade, resulting in occurrence of hydraulic shock waves within the liquid region adjacent to the impact. The proof-of-concept rotational generator of hydraulic shock treating 9 L of water spiked with viruses was able to achieve 3 logs reduction of viral plaque count within 80-100 liquid passes at moderate blade impact velocities (namely, 70 and 88 m/s) despite the water temperature not exceeding 40 °C and no detectible cavitation.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
This study aims to optimize the reduction of free fatty acids (FFAs) in palm fatty acid distillate (PFAD) using hydrodynamic cavitation reactors (HCRs) in series and a solid acid catalyst for biodiesel production. Hydrodynamic cavitation is used to accelerate the esterification of FFAs using a heterogeneous acid catalyst. There are three HCRs units, and each HCR composed of a 3D-printed rotor and stator, is separated by flanges and equipped with a basket for holding Amberlyst-15 catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!