Aims: To evaluate the impact of serological, imaging and clinical measures of cerebral injury on patient self-sufficiency and survival after transcatheter aortic valve implantation (TAVI).
Methods And Results: Before and three days after TAVI, neuron-specific enolase (NSE), cerebral diffusion-weighted magnetic resonance imaging (DW-MRI) and neurological performance utilising National Institutes of Health Stroke Scale (NIHSS) were assessed. Self-sufficiency was determined with established score systems (instrumental activities of daily living score, Barthel Index). Parameters of cerebral injury were investigated for their impact on self-sufficiency and all-cause mortality after 30 days and one year. Sixty-one patients were enrolled (logistic EuroSCORE: 26.4±18.1, STS score: 7.9±5.7), of whom 39 completed the imaging protocol. The incidences of NSE increase, new embolic events in DW-MRI, and neurological deficit early after TAVI were 52.4%, 71.8% and 6.6%, respectively. The degree of concomitant comorbidities, reflected by higher risk scores, had significant impact on outcome. Plasma levels of NSE and new emboli in DW-MRI were neither related to self-sufficiency nor to survival one year after TAVI.
Conclusions: In this observational pilot study, "silent" cerebral injury is neither related to dependent lifestyle nor to mortality during the first year after TAVI. However, long-term follow-up is needed to elucidate fully the impact of silent stroke. Clinical trials number: NCT00883285.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4244/EIJV8I11A198 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.
To what extent sildenafil, a selective inhibitor of the type-5 phosphodiesterase modulates systemic redox status and cerebrovascular function during acute exposure to hypoxia remains unknown. To address this, 12 healthy males (aged 24 ± 3 y) participated in a randomized, placebo-controlled crossover study involving exposure to both normoxia and acute (60 min) hypoxia (Fi = 0.14), followed by oral administration of 50 mg sildenafil and placebo (double-blinded).
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFNutrients
January 2025
Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
Background/objectives: Omega-3 fatty acids (-3), recognized for their anti-inflammatory and brain health benefits, are being studied to enhance cognitive function, aid physical recovery, and reduce injury rates among military service members (SMs). Given the unique demands faced by this tactical population, this systematic review aims to evaluate the evidence of -3 to support physical and mental resilience and overall performance.
Methods: This review was conducted in accordance with Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and includes articles that assessed -3 status or implemented -3 interventions in relation to physical and cognitive performance, recovery, and injury outcomes (2006 to 2024).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!