Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2013.02.012DOI Listing

Publication Analysis

Top Keywords

laser tweezers
12
tweezers raman
12
raman spectroscopy
12
red blood
8
blood cells
8
sickle cord
8
cord blood
8
applied mechanical
8
mechanical force
8
laser power
8

Similar Publications

Editorial on Optical Tweezers for the 15th Anniversary of Micromachines.

Micromachines (Basel)

December 2024

Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.

The electric fields of tightly focused laser beams can be strong enough to apply appreciable force to microscopic objects, including biological entities such as cells, bacteria, and even viruses and biomolecules [...

View Article and Find Full Text PDF

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

Mechanical Properties of Viruses.

Subcell Biochem

December 2024

Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.

Structural biology techniques have greatly contributed to unveiling the interplay between molecular structure, physico-chemical properties, and biological function of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical features of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength, and material fatigue.

View Article and Find Full Text PDF

Optical Tweezers to Study Viruses.

Subcell Biochem

December 2024

Centro de Tecnologías Físicas, Universitat Politècnica de València, Valencia, Spain.

A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids.

View Article and Find Full Text PDF

Measuring the biomechanical properties of cell-derived fibronectin fibrils.

Biomech Model Mechanobiol

December 2024

Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA, 23284, USA.

Article Synopsis
  • FN (fibronectin) fibrils are crucial for processes like embryonic development and wound healing, but their mechanical properties are not well understood.
  • A new system allows for the measurement of cell-derived FN fibrils, revealing three types of elasticity (linear, strain-hardening, and nonlinear) and showing that fibril behavior changes with repeated stretching.
  • The average elasticity of these fibrils is about 8 MPa, and they display time-dependent viscoelastic behavior, which could deepen our knowledge of cellular mechanics in development and fibrotic diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!