Thymoquinone (TQ) is the main constituent of the oil extracted from Nigella sativa seeds, which is known to be the active constituent responsible for many of the seed antioxidant and anti-inflammatory effects. The present study was designed to investigate whether TQ can protect against Alzheimer's amyloid-β peptide (Aβ) induced neurotoxicity in rat primary neurons. Cultured hippocampal and cortical neurons were treated with Aβ1-42 and TQ simultaneously for 72 h. Treatment with TQ efficiently attenuated Aβ1-42-induced neurotoxicity, as evidenced by improved cell viability. TQ also inhibited the mitochondrial membrane potential depolarization and reactive oxygen species generation caused by Aβ1-42. In addition, TQ restored synaptic vesicle recycling inhibition, partially reversed the loss of spontaneous firing activity, and inhibited Aβ1-42 aggregation in vitro. These beneficial effects may contribute to the protection against Aβ-induced neurotoxicity. In conclusion, our results suggested that TQ has neuroprotection potential against Aβ1-42 in rat hippocampal and cortical neurons and thus may be a promising candidate for Alzheimer disease treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2012.11.139 | DOI Listing |
Front Toxicol
January 2025
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States.
Primary cell cultures from rodent brain are widely used to investigate molecular and cellular mechanisms of neurotoxicity. To date, however, it has been challenging to reliably culture endogenous microglia in dissociated mixed cultures. This is a significant limitation of most neural cell models given the growing awareness of the importance of interactions between neurons, astrocytes and microglia in defining responses to neurotoxic exposures.
View Article and Find Full Text PDFLysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging.
View Article and Find Full Text PDFInt J Gynaecol Obstet
January 2025
Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.
View Article and Find Full Text PDFChemosphere
January 2025
Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina. Electronic address:
DEHP is a prevalent phthalate with wide industrial applications and well-documented endocrine-disrupting effects, including the potential disruption of AR signaling in different tissues. The present study aimed to investigate the effects of gestational and lactational exposure to environmentally relevant DEHP concentrations on AR expression and subcellular localization in the pituitary gland, the master endocrine organ, with a focus on gonadotroph cells by in vivo and in vitro approaches. After DEHP exposure during gestation and lactation, a sex-specific modulation was detected in AR-positive pituitary cells and AR protein expression as assessed through flow cytometry and western blot.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, Affiliated Hospital of Jiangnan University, 214122 Wuxi, Jiangsu, China.
Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!