The effects of simulated microgravity on intervertebral disc degeneration.

Spine J

Orthopedic Research Laboratories, Department of Orthopedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.

Published: March 2013

Background Context: Astronauts experience back pain, particularly low back pain, during and after spaceflight. Recent studies have described histologic and biochemical changes in rat intervertebral discs after space travel, but there is still no in vitro model to investigate the effects of microgravity on disc metabolism.

Purpose: To study the effects of microgravity on disc degeneration and establish an in vitro simulated microgravity study model.

Study Design: Discs were cultured in static and rotating conditions in bioreactor, and the characteristics of disc degeneration were evaluated.

Methods: The mice discs were cultured in a rotating wall vessel bioreactor where the microgravity condition was simulated. Intervertebral discs were cultured in static and microgravity condition. Histology, biochemistry, and immunohistochemical assays were performed to evaluate the characteristics of the discs in microgravity condition.

Results: Intervertebral discs cultured in rotating bioreactors were found to develop changes of disc degeneration manifested by reduced red Safranin-O staining within the annulus fibrosus, downregulated glycosaminoglycan (GAG) content and GAG/hydroxyproline ratio, increased matrix metalloproteinase 3 expression, and upregulated apoptosis.

Conclusions: We conclude that simulated microgravity induces the molecular changes of disc degeneration. The rotating bioreactor model will provide a foundation to investigate the effects of microgravity on disc metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612270PMC
http://dx.doi.org/10.1016/j.spinee.2012.01.022DOI Listing

Publication Analysis

Top Keywords

disc degeneration
20
discs cultured
16
simulated microgravity
12
intervertebral discs
12
effects microgravity
12
microgravity disc
12
microgravity
9
investigate effects
8
cultured static
8
cultured rotating
8

Similar Publications

Objectives: Sleep disorders are considered a risk factor for aging and skeletal degeneration, but their impact on intervertebral disc degeneration (IDD) remains unclear. The aim of this study was to assess associations between sleep characteristics and IDD, and to identify potential causal relationships.

Methods: Exposure factors included six unhealthy sleep characteristics: insomnia, short sleep duration (< 7 h), long sleep duration (≥ 9 h), evening chronotype, daytime sleepiness, and snoring.

View Article and Find Full Text PDF

To investigate the effects of long non-coding RNA KLHL7-AS1 (LncRNA KLHL7-AS1) on the proliferation and apoptosis of nucleus pulposus cells under oxidative stress and its mechanisms. Human nucleus pulposus cells (HUM-iCell-s012) were divided into 4 groups, and unoxidized nucleus pulposus cells were transfected with an empty pcDNA vector (pcDNA-control) to serve as the blank control group. Based on previous studies on oxidative stress-induced nucleus pulposus cell senescence and preliminary experiments, oxidative stress was induced by treating nucleus pulposus cells with 400 μmol/L HO.

View Article and Find Full Text PDF

In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.

View Article and Find Full Text PDF

Purpose: This study aimed to compare the incidence of radiological adjacent segment disease (R-ASD) at L3/4 between patients with L4/5 degenerative spondylolisthesis (DS) who underwent L4/5 posterior lumbar interbody fusion (PLIF) and those who underwent microscopic bilateral decompression via a unilateral approach (MBDU) at L4/5. Our ultimate goal was to distinguish the course of natural lumbar degeneration from fusion-related degeneration while eliminating L4/5 decompression as a confounder.

Methods: Ninety patients with L4/5 DS who underwent L4/5 PLIF (n = 53) or MBDU (n = 37) and were followed for at least 5 years were retrospectively analyzed.

View Article and Find Full Text PDF

Objective: Cervical degeneration involves many pathophysiological changes. Vertebral bone loss, sclerotic hyperplasia of the vertebral body and intervertebral disc degeneration (IDD) are most common degenerative factors. However, whether there is a correlation between changes in vertebral bone mass and IDD remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!