Development of cardiac safety translational tools for QT prolongation and torsade de pointes.

Expert Opin Drug Metab Toxicol

Center for Drug Evaluation and Research, Division of Metabolism and Endocrinology Products, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA.

Published: July 2013

Objective: A regulatory science priority at the Food and Drug Administration (FDA) is to promote the development of new innovative tools such as reliable and validated computational (in silico) models. This FDA Critical Path Initiative project involved the development of predictive clinical computational models for decision-support in CDER evaluations of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs.

Methods: Several classification models were built using predictive technologies of quantitative structure-activity relationship analysis using clinical in-house and public data on induction of QT prolongation and torsade de pointes (TdP) in humans. Specific models were geared toward prediction of high-risk drugs with attention to outcomes from thorough QT studies and TdP risk based on clinical in-house data. Models used were independent of non-clinical data or known molecular mechanisms. The positive predictive performance of the in silico models was validated using cross-validation and independent external validation test sets.

Results: Optimal performance was observed with high sensitivity (87%) and high specificity (88%) for predicting QT interval prolongation using in-house data, and 77% sensitivity in predicting drugs withdrawn from the market. Furthermore, the article describes alerting substructural features based on drugs tested in the clinical trials.

Conclusions: The in silico models provide evidence of a structure-based explanation for these cardiac safety endpoints. The models will be made publically available and are under continual prospective external validation testing and updating at CDER using TQT study outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425255.2013.783819DOI Listing

Publication Analysis

Top Keywords

silico models
12
cardiac safety
8
prolongation torsade
8
torsade pointes
8
models
8
interval prolongation
8
clinical in-house
8
in-house data
8
external validation
8
development cardiac
4

Similar Publications

Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.

View Article and Find Full Text PDF

Background: LIN28, a highly conserved RNA-binding protein, regulate a wide variety of post-transcriptional cellular processes. The current study aimed to identify genetic variants of five single nucleotide polymorphisms (SNPs) in the LIN28B gene (rs221634, rs22163, rs314276, rs9404590, and rs12194974) and their association with Breast cancer.

Method: 220 patients and 230 controls were genotyped by the RFLP assay for Lin28B gene variants.

View Article and Find Full Text PDF

Finite element modeling of clavicle fracture fixations: a systematic scoping review.

Med Biol Eng Comput

January 2025

Department of Orthopaedics, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.

Finite element analysis has become indispensable for biomechanical research on clavicle fractures. This review summarized evidence regarding configurations and applications of finite element analysis in clavicle fracture fixation. Seventeen articles involving 22 clavicles were synthesized from CINAHL, Embase, IEEE Xplore, PubMed, Scopus, and Web of Science databases.

View Article and Find Full Text PDF

Nanobodies or variable antigen-binding domains (VH) derived from heavy chain-only antibodies (HcAb) occurring in the Camelidae family offer certain superior physicochemical characteristics like enhanced stability, solubility, and low immunogenicity compared to conventional antibodies. Their efficient antigen-binding capabilities make them a preferred choice for next-generation small biologics. In the present work, we design an anti-SARS-CoV-2 bi-paratopic nanobody drug conjugate by screening a nanobody database.

View Article and Find Full Text PDF

Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!