Stabilization of neutral polyfluorene in aqueous solution through their interaction with phospholipids and sol-gel encapsulation.

ACS Appl Mater Interfaces

Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, Edificio Torregaitán. Avda. de la Universidad s/n, Alicante 03202, Elche, Spain.

Published: April 2013

Interaction between poly[9,9-bis(6'-bromohexyl)-2,7-fluorene-co-alt-1,4-phenylene] (PFPBr2), a neutral conjugated polyfluorene which is completely insoluble in water, and zwitterionic phospholipids has been investigated in order to generate new fluorescent structures which are stable in aqueous media as a means of extending the biological applications of these kinds of polymers. Two types of differently shaped and composed fluorescent structures were identified and then isolated and characterized separately using different biophysical techniques. The first structure type, corresponding to liposomal complexes, showed a fluorescence band centered around 405 nm and maximum absorption at 345 nm, while the second, corresponding to polymer-phospholipid aggregates of variable sizes with lower lipid content, absorbed at longer wavelengths and displayed a well resolved fluorescence spectrum with a maximum centered at 424 nm. Both structures were stable in a large range of pH, and their fluorescence intensity remained practically unaltered for 10 days; it then began to decrease, which was probably because of aggregation. Encapsulation of these structures within the pores of a sol-gel matrix did not affect their fluorescent properties but increased their stability, avoiding further aggregation and subsequent precipitation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am400570tDOI Listing

Publication Analysis

Top Keywords

fluorescent structures
8
structures stable
8
stabilization neutral
4
neutral polyfluorene
4
polyfluorene aqueous
4
aqueous solution
4
solution interaction
4
interaction phospholipids
4
phospholipids sol-gel
4
sol-gel encapsulation
4

Similar Publications

Machine Learning-Assisted Biomass-Derived Carbon Dots as Fluorescent Sensor Array for Discrimination of Warfarin and Its Metabolites.

Langmuir

January 2025

School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China.

Warfarin (WAR), an effective oral anticoagulant, is of utmost importance in treating many diseases. Despite its significance, rapid and precise discrimination of WAR remains a formidable challenge, especially facing its structural analogs of metabolites. Here, three kinds of herb-derived N-doped carbon dots (NCDs) were greenly synthesized via a fast and simple microwave-assisted method.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play crucial roles in both cell signaling and defense mechanisms. Hypochlorous acid (HOCl), a strong oxidant, aids the immune response by damaging pathogens. In this study, we developed two pyridinium-based fluorophores PSSM and PSSE for selective hypochlorite detection.

View Article and Find Full Text PDF

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!