Isoamyl nitrite has previously been considered acceptable as an inhaled cyanide antidote; therefore, the antidotal utility of this organic nitrite compared with sodium nitrite was investigated. To facilitate a quantitative comparison, doses of both sodium nitrite and isoamyl nitrite were given intraperitoneally in equimolar amounts to sublethally cyanide-challenged mice. Righting recovery from the knockdown state was clearly compromised in the isoamyl nitrite-treated animals, the effect being attributable to the toxicity of the isoamyl alchol produced during hydrolysis of the isoamyl nitrite to release nitrite anion. Subsequently, inhaled aqueous sodium nitrite aerosol was demonstrated to ameliorate sublethal cyanide toxicity, when provided to mice after the toxic dose, by the more rapid recovery of righting ability compared to that of the control animals given only the toxicant. Aerosolized sodium nitrite has thus been shown by these experiments to have promise as a better alternative to organic nitrites for development as an inhaled cyanide antidote. The inhaled sodium nitrite led to the production of NO in the bloodstream as determined by the appearance of EPR signals attributable to nitrosylhemoglobin and methemoglobin. The aerosol delivery was performed in an unmetered inhalation chamber, and in this study, no attempt was made to optimize the procedure. It is argued that administration of an effective inhaled aqueous sodium nitrite dose in humans is possible, though just beyond the capability of current individual metered-dose inhaler designs, such as those used for asthma. Finally, working at slightly greater than LD50 NaCN doses, it was fortuitously discovered that (i) anesthesia leads to significantly prolonged survival compared to that of unanesthetized animals and that (ii) the antidotal activity of nitrite anion was completely abolished under anesthesia. Plausible explanations for these effects in mice and their practical consequences in relation to testing putative cyanide antidotes are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555309 | PMC |
http://dx.doi.org/10.1021/tx400103k | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine.
Prenatal hypoxia (PH) is a key factor in the development of long-term cardiovascular disorders, which are caused by various mechanisms of endothelial dysfunction (ED), including those associated with NO deficiency. This emphasizes the potential of therapeutic agents with NO modulator properties, such as Thiotriazoline, Angiolin, Mildronate, and L-arginine, in the treatment of PH. Pregnant female rats were given a daily intraperitoneal dose of 50 mg/kg of sodium nitrite starting on the 16th day of pregnancy.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
The study investigated the impact of low-dose sodium nitrite on yak meat color and mitochondrial functional characteristics during the wet curing. The results showed that sodium nitrite significantly enhanced the redness ( value) of yak meat by increasing the activities of mitochondrial complexes I, II, III and IV, which are critical for electron transport and aerobic respiration. Additionally, sodium nitrite reduced mitochondrial swelling and membrane permeability, and slowed the production of lipid oxidation products, indicating protective effects against mitochondrial damage and preserving mitochondrial integrity.
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
Department of Laboratory Medicine, 60200 Ghent University Hospital, Ghent, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!