In this study, grey-based Hopfield neural network (GHNN), is proposed for the unsupervised analysis of motor imagery (MI) electroencephalogram (EEG) data. Combined with segment selection and feature extraction, GHNN is used for the recognition of left and right MI data. A Gaussian-like filter is proposed to reduce noise, to further enhance performance of active segment selection. Features are extracted by coherence from wavelet data, and then discriminated by GHNN, which is an unsupervised approach suitable for the online classification of nonstationary biomedical signals. Compared to EEG data without segment selection, several usual features, and classifiers, the proposed system is potentially an analytic approach in brain-computer interface (BCI) applications.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1550059413477090DOI Listing

Publication Analysis

Top Keywords

segment selection
12
hopfield neural
8
neural network
8
motor imagery
8
eeg data
8
embedded grey
4
grey relation
4
relation theory
4
theory hopfield
4
network application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!