Efferent feedback minimizes cochlear neuropathy from moderate noise exposure.

J Neurosci

Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114, USA.

Published: March 2013

Although protective effects of the cochlea's efferent feedback pathways have been well documented, prior work has focused on hair cell damage and cochlear threshold elevation and, correspondingly, on the high sound pressure levels (>100 dB SPL) necessary to produce them. Here we explore the noise-induced loss of cochlear neurons that occurs with lower-intensity exposures and in the absence of permanent threshold shifts. Using confocal microscopy to count synapses between hair cells and cochlear nerve fibers, and using measurement of auditory brainstem responses and otoacoustic emissions to assess cochlear presynaptic and postsynaptic function, we compare the damage from a weeklong exposure to moderate-level noise (84 dB SPL) in mice with varying degrees of cochlear de-efferentation induced by surgical lesion to the olivocochlear pathway. Such exposure causes minimal acute threshold shifts and no chronic shifts in mice with normal efferent feedback. In de-efferented animals, there was up to 40% loss of cochlear nerve synapses and a corresponding decline in the amplitude of the auditory brainstem response. Quantitative analysis of the de-efferentation in inner versus outer hair cell areas suggested that outer hair cell efferents are the most important in minimizing this neuropathy, presumably by virtue of their sound-evoked feedback reduction of cochlear amplification. The moderate nature of this acoustic overexposure suggests that cochlear neurons are at risk even in everyday acoustic environments, so the need for cochlear protection is plausible as a driving force in the design of this feedback pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640841PMC
http://dx.doi.org/10.1523/JNEUROSCI.5027-12.2013DOI Listing

Publication Analysis

Top Keywords

efferent feedback
12
hair cell
12
cochlear
10
loss cochlear
8
cochlear neurons
8
threshold shifts
8
cochlear nerve
8
auditory brainstem
8
outer hair
8
feedback minimizes
4

Similar Publications

Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons.

View Article and Find Full Text PDF

Renal Tubule-Specific Angiotensinogen Deletion Attenuates SGLT2 Expression and Ameliorates Diabetic Kidney Disease in Murine Models of Type 1 Diabetes.

Diabetes

January 2025

Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC Canada H2X 0A9.

The role of the intrarenal renin-angiotensin system (iRAS) in diabetic kidney disease (DKD) progression remains unclear. In this study, we generated mice with renal tubule-specific deletion of angiotensinogen (Agt; RT-Agt-/-) in both Akita and streptozotocin (STZ)-induced mouse model of diabetes. Both Akita RT-Agt-/- and STZ-RT-Agt-/- mice exhibited significant attenuation of glomerular hyperfiltration, urinary albumin/creatinine ratio, glomerulomegaly and tubular injury.

View Article and Find Full Text PDF

Agency.

J Gen Psychol

December 2024

Universidad de Guadalajara.

Article Synopsis
  • - Agency is defined as the ability to take actions toward selected goals, and exists on a spectrum from deterministic processes (fixed responses) to volitional actions (choices), highlighting the complexity of how we determine our objectives.
  • - The control of actions involves a hierarchy of systems where higher-level goals influence lower-level reflexes and automated behaviors; when routines become habitual, they shift to automatic responses, but changes in emotions or contexts can reactivate conscious decision-making.
  • - The concept of the Self is framed as a network of command modules that simulate and evaluate actions, suggesting that free will and determinism coexist on a continuum rather than being opposites, integrating these ideas with Grossberg's Adaptive Resonance Theory.
View Article and Find Full Text PDF

Forward models are mechanisms enabling an agent to predict the sensory outcomes of its actions. They can be implemented through efference copies: copies of motor signals inhibiting the expected sensory stimulation, literally canceling the perceptual outcome of the predicted action. In insects, efference copies are known to modulate optic flow detection for flight control in flies.

View Article and Find Full Text PDF

Essential tremor (ET) is one of the most common movement disorders in adults. Deep brain stimulation (DBS) of the ventralis intermediate nucleus (VIM) of the thalamus and/or the posterior subthalamic area (PSA) has been shown to provide significant tremor suppression in patients with ET, but with significant inter-patient variability and habituation to the stimulation. Several non-invasive neuromodulation techniques targeting other parts of the central nervous system, including cerebellar, motor cortex, or peripheral nerves, have also been developed for treating ET, but the clinical outcomes remain inconsistent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!