Modelling the use of Wolbachia to control dengue fever transmission.

Bull Math Biol

Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK.

Published: May 2013

AI Article Synopsis

  • Researchers have found that introducing the bacterium Wolbachia into Aedes aegypti mosquitoes could help control dengue fever transmission.
  • Infected mosquitoes may have a shorter lifespan and reduced ability to transmit dengue, making them less likely to spread the virus.
  • While Wolbachia shows promise for dengue control, its effectiveness depends on the basic reproductive number (R0), and in areas with high R0, stronger strains that can completely eliminate transmission may be necessary.

Article Abstract

Experiments and field trials have shown that the intracellular bacterium Wolbachia may be introduced into populations of the mosquito Aedes aegypti, the primary vector for dengue fever. In the absence of Wolbachia, a mosquito acquiring the dengue virus from an infected human enters an exposed (infected but not infectious) period before becoming infectious itself. A Wolbachia-infected mosquito that acquires dengue (i) may have a reduced lifespan, so that it is less likely to survive the exposed period and become infectious, and (ii) may have a reduced ability to transmit dengue, even if it has survived the exposed period. Wolbachia introduction has therefore been suggested as a potential dengue control measure. We set up a mathematical model for the system to investigate this suggestion and to evaluate the desirable properties of the Wolbachia strain to be introduced. We show that Wolbachia has excellent potential for dengue control in areas where R 0 is not too large. However, if R 0 is large, Wolbachia strains that reduce but do not eliminate dengue transmission have little effect on endemic steady states or epidemic sizes. Unless control measures to reduce R 0 by reducing mosquito populations are also put in place, it may be worth the extra effort in such cases to introduce Wolbachia strains that eliminate dengue transmission completely.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-013-9835-4DOI Listing

Publication Analysis

Top Keywords

dengue
9
dengue fever
8
period infectious
8
exposed period
8
potential dengue
8
dengue control
8
wolbachia strains
8
eliminate dengue
8
dengue transmission
8
wolbachia
7

Similar Publications

T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.

View Article and Find Full Text PDF

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Background: Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease.

Methods: This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and study participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients.

View Article and Find Full Text PDF

Background: Severe respiratory distress and acute kidney injury (AKI) are key factors leading to poor outcomes in patients with dengue shock syndrome (DSS). There is still limited data on how much resuscitated fluid and the specific ratios of intravenous fluid types contribute to the development of severe respiratory distress necessitating mechanical ventilation (MV) and AKI in children with DSS.

Methodology/principal Findings: This retrospective study was conducted at a tertiary pediatric hospital in Vietnam between 2013 and 2022.

View Article and Find Full Text PDF

Background Objectives: Dengue is now endemic in over 100 countries, with Asia bearing over 70% of the global burden. In Malaysia, dengue cases have increased dramatically, particularly in Pulau Pinang, where cases rose from 1,621 in 2022 to 7,343 in 2023. To examine factors associated with dengue outbreaks in Pulau Pinang in 2023 by comparing outbreak cases with single cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!