Pyrazolo[4,3-b]indole derivatives have been designed as novel CK2 inhibitor compounds based on the binding mode analysis of a previously reported phenylpyrazole-type CK2 inhibitor. A series of pyrazolo[4,3-b]indoles and related dihydropyrazolo[4,3-b]indoles were efficiently prepared from simple starting materials using a gold-catalysed three-component annulation reaction as a key step. Several of the newly synthesized compounds displayed high levels of inhibitory activity, indicating that the pyrazolo[4,3-b]indole core represents a promising scaffold for the development of potent CK2 inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3ob40223a | DOI Listing |
Chem Commun (Camb)
June 2014
School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
An efficient C-O, C-S and C-C bond-forming sequence leads to functionalised compounds bearing sulfur-substituted quaternary carbons. Ynamides are employed as diazo-equivalents to access the [2,3]-sigmatropic rearrangements of allyl sulfonium ylides by a three-component chemoselective oxidation and intermolecular ylide formation.
View Article and Find Full Text PDFOrg Biomol Chem
May 2013
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
Pyrazolo[4,3-b]indole derivatives have been designed as novel CK2 inhibitor compounds based on the binding mode analysis of a previously reported phenylpyrazole-type CK2 inhibitor. A series of pyrazolo[4,3-b]indoles and related dihydropyrazolo[4,3-b]indoles were efficiently prepared from simple starting materials using a gold-catalysed three-component annulation reaction as a key step. Several of the newly synthesized compounds displayed high levels of inhibitory activity, indicating that the pyrazolo[4,3-b]indole core represents a promising scaffold for the development of potent CK2 inhibitors.
View Article and Find Full Text PDFChemistry
March 2012
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK.
1-Hydroxy-1,2-benziodoxol-3(1H)-one (IBA) is an efficient terminal oxidant for gold-catalysed, three-component oxyarylation reactions. The use of this iodine(III) reagent expands the scope of oxyarylation to include styrenes and gem-disubstituted olefins, substrates that are incompatible with the previously reported Selectfluor-based methodology. Diverse arylsilane coupling partners can be employed, and in benzotrifluoride, homocoupling is substantially reduced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!