Several studies have shown effects of diesel exhaust (DE) on the central nervous system, but the mechanism is unclear. Fetal mice were exposed to whole DE (contains gases and particles) in an inhalation chamber, and cerebrum gene expression changes were examined by gene assay (microarray and quantitative real-time PCR). By microarray, upregulation of Xist, B-raf and Drwms2 were detected. Especially, mRNA expression of Xist was increased in a concentration-dependent manner in male and female mice. Xist (X-inactive specific transcript) is a major effector of the X-inactivation process, and X-linked genes are highly expressed in brain tissue and consistent with a role in brain developments. By quantitative real-time PCR, Tsix (crucial noncoding antisense partner of Xist) and other X-linked genes (Mecp2, Hprt1, and Sts) were examined; Tsix was upregulated, and other X-linked genes were unaffected in the male and female mice. Our findings suggest that exposure to DE increases Xist and Tsix gene expression in utero without influencing X-linked gene expression. An examination of Xist gene expression changes may provide an important biomarker for DE-induced effects. The possibility of avoiding X-chromosome inactivation (XCI) mechanisms by minimizing exposure to DE is expected.

Download full-text PDF

Source
http://dx.doi.org/10.2131/jts.38.245DOI Listing

Publication Analysis

Top Keywords

gene expression
16
x-linked genes
12
diesel exhaust
8
x-chromosome inactivation
8
expression changes
8
quantitative real-time
8
real-time pcr
8
male female
8
female mice
8
expression
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!